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Abstract—Numerous metrics exist for quantifying the per-
formance of information fusion systems. Some metrics focus
on estimation accuracy by comparing estimated quantities to
the truth. Other metrics assess the accuracy of the estimation
uncertainty by determining the consistency of the estimation error
covariance. In this paper we define two metrics that quantify the
data association algorithm’s performance (whether the data are
measurements or tracks). We compare the metric to a few existing
metrics that quantify the effects of data association and evaluate
the new metrics both with some notional examples and with
some simulated data run through a track-to-track (T2T) fusion
algorithm. Finally, we discuss a direct analogy between the data
association problem and the information retrieval problem and
reference two metrics in the information retrieval domain that
are equivalent to the two metrics proposed in this paper.

Index Terms—fusion performance, association performance,
missed association, incorrect association, track-to-track associ-
ation, precision, recall

I. INTRODUCTION

Multi-sensor tracking systems are prevalent throughout both
the military and civilian domains. The objective of these
systems is to process data collected by multiple sensor systems
and generate tracks on the entities in the surveillance region.
There are two key steps in the process of tracking: data associ-
ation and state estimation. In data association, newly received
data are associated with tracks in the tracker’s database. After
the assignment process is done, the tracks to which the data
were assigned are updated, meaning that their state estimates
are modified to account for the newly received information.
This process applies to both measurement-to-track (M2T)
fusion, in which case the data are sensor measurements to
be assigned to local tracks, and track-to-track (T2T) fusion, in
which case the data are local track reports to be assigned to
composite tracks.

The association step is key since improving the track state
estimates relies on correct association of data to tracks. There
are metrics that attempt to quantify the performance of the
data association step. Some of these derive from measures-of-
performance (MOPs) defined for the target tracking problem
[1]. Examples of these MOPs are track purity, track continuity,
target purity and target continuity. We shall discuss these
subsequently. Another set of metrics that originate from the
track fusion problem also measure the association problem,
but at a “higher” level in the sense that they do not quantify

all association decisions made by the association algorithm;
rather, they measure the resulting effects of association with
respect to the number of tracks per entity (e.g., track redun-
dancy). In the next section we review these existing metrics.

II. EXISTING ASSOCIATION METRICS

The plethora of metrics that exist for quantifying the per-
formance of fusion systems are too numerous to discuss here,
so we focus our discussion on metrics related to quantifying
the performance of the data association problem in tracking.
Note that there are some tracking approaches (e.g., PHD filter,
Intensity filter) that do not explicitly maintain tracks and,
therefore, do not explicitly associate measurements to tracks.
Association metrics do not apply to these tracking approaches,
but other metrics such as the Optimal Sub-Pattern Assignment
(OSPA) [2] are more appropriate to evaluate the performance
of such approaches.

Several metrics related to data association came out of
research into MOPs for quantifying ground moving target
indicator (GMTI) tracker performance [1]. The first two are
target-focused:

• Target Continuity - measures the number of tracks
initialized on a given target. This metric measures the
association algorithm’s failure to associate data to an
existing track.

• Target Purity - measures the percent of a target’s de-
tections that went into its predominant track. This metric
essentially measures what percent of a target’s life was
spent in its main track. This gives almost no information
about the association decisions.

The other two MOPs are track-focused:
• Track Continuity - measures the number of individual

targets associated with a given track. This only indirectly
measures mis-associations.

• Track Purity - measures the percent of a track’s associ-
ated data that derive. from the predominant target [3].

Of these four metrics, track purity gives the closest measure
of a tracker’s mis-association performance (what we shall
call incorrect associations). For more discussion of purity and
further references, see [4], [5]. Fewer incorrect associations
result in higher purity. While this is a useful metric, it has
two key problems. First, the metric is cumulative over the



track’s lifetime so it does not differentiate between incorrect
associations made early its history with those made late.
Second, the metric can easily be defeated by placing each
measurement into its own track, yielding a purity of 100%.

The first problem can be addressed by maintaining a time
series on the change in purity. Thus tracks that are impure
early on will show decreasing purity early in the track life
but then level off towards its end. Tracks that become more
impure toward the end will show no change in the tracks’
early life but will show a decrease in purity at the end of the
track’s life. The second problem can only be addressed by
including a countering metric. A countering metric is one that
has a converse relationship to another metric. For example,
probability of detection (Pd) and probability of false alarm
(Pfa) are countering metrics. A sensor should have high Pd

and low Pfa. However, a sensor can be made more sensitive to
detections (increased Pd) at the expense of introducing more
false detections.

There are also metrics to quantify the association perfor-
mance of a T2T fusion system. These metrics do not directly
evaluate the individual association decisions made by the
algorithm, but they quantify the resulting effects of association
in terms of the number of tracks per tracked entity. They are
defined as:

• Conciseness - is the percent of tracked entities that have
a single composite track associated with them.

• Multiplicity - is the percent of tracked entities that have
more than one composite track associated with them. This
gives a sense of the algorithm’s failure to associate data
with an existing track.

Track conciseness can be thought of as the countering metric
for track purity. The track conciseness metric is intended to
measure how many extra tracks are created by the fusion
system. In [6], the term clarity is used to convey the same
idea as conciseness but is further broken down into ambiguous
and spurious tracks. Redundancy [7] is yet another metric that
quantifies the formation of extra tracks.

While purity, conciseness, multiplicity, redundacy, and other
similar metrics are useful, they do not directly evaluate the
individual association decisions made by the association al-
gorithm; they evaluate how those decision affect the resulting
tracks. What is needed are metrics that directly evaluate the
association decisions made by the algorithm.

After developing our two metrics for evaluating
measurement-to-track and track-to-track associaiton, we
became aware of analogous metrics used in the domains of
information retrieval and machine learning. These metrics
are called precision and recall [8], [9] and are equivalent to
the metrics that we have developed here. We shall defer a
discussion of these two metrics (see Section III-E) until after
we have presented the two metrics proposed in this paper.

III. ASSOCIATION METRICS

Before defining the association metrics that we propose to
use for evaluating a T2T or M2T fusion system, it will be
helpful to define some terms. First, we define an association

event as a decision that two pieces of information should
or should not be associated1 An association event can be
categorized as one of two types. A positive association is
a decision to associate two pieces of information, while a
negative association is a decision not to associate two pieces
of information.

The above definitions characterize the decisions made by an
association algorithm. In order to evaluate these decisions, the
truth entity corresponding to that data (e.g., for a measurement,
this would be the truth entity from which that measurement
was derived). Establishing the truth entity of a piece of
information is referred to as the “truth-to-track assignment
problem,” and various methods for determining the truth entity
are given in [10].

With these definitions we are now ready to define the
following joint events (over truth and algorithm decisions):

• Correct Positive Association: a positive association in
which the truth entities of the associated elements are the
same.

• Incorrect Positive Association: a positive association in
which the truth entities of the associated elements are not
the same.

• Missed Association (or incorrect negative association):
a negative association in which the truth entities of the
elements are the same.

• Correct Non-Association: a negative association in
which the truth entities of the two elements are not the
same.

The above joint event characterizations can be represented in
a two-dimensional table as shown in Table I. The columns
of the table reflect the truth, and the rows represent the
decisions made by the fusion system. Now that the association

TABLE I
ASSOCIATION EVENT CHARACTERIZATIONS.

True Assoc. False Assoc.
Positive Assoc. Correct Assoc. Incorrect Assoc.
Negative Assoc. Missed Assoc. Correct Non-Assoc.

events are defined and characterize the association decisions,
the associations made by the M2T/T2T algorithm can be
quantified.

A. Pairwise Association Events

Consider a process in which local tracks are received from
two different sources (sources R and S) at various points in
time, and there are two truth entities being tracked (entities
a and b). The association algorithm associates received local
tracks with previously received local tracks (and fuses them
for improved estimates). Typically, the previously received and
fused local tracks are represented by system or composite
tracks, but it will be useful to explicitly designate the pre-
viously received tracks. For the development that follows we

1Most association algorithms make “hard” associations at some point. There
are some “soft” association algorithms that do not make explicit associations,
so this approach would not apply to these.



use Xy
i (t) to denote the ith track from Source X at time t

with associated truth type y.
Suppose a local tracker (source R) is initially tracking the

two entities with tracks R1 and R2. Additionally, there is a
second local tracker (source S) tracking these two entities with
tracks S1 and S2. Unbeknownst to the track fusion system,
R1 is updated at time t4 with a false alarm (and is, therefore,
not following entity a nor b). Local tracker R then forms a
new local track on entity a. Shown in Table II is a history of
received local tracks along with the associations made by the
T2T association algorithm.

TABLE II
RECEIVED LOCAL TRACKS AT DIFFERENT TIMES AND FORMED

COMPOSITE TRACKS.

Composite
Track t1 t2 t3 t4

C1 Ra
1(t1) Ra

1(t1) Ra
1(t1) Ra

1(t1)
Sa
1 (t2) Sa

1 (t2) Sa
1 (t2)

Ra
1(t3) Ra

1(t3)
R?

1(t4)
C2 Rb

2(t1) Rb
2(t1) Rb

2(t1) Rb
2(t1)

Sb
2(t2) Sb

2(t2) Sb
2(t2)

Rb
2(t4)

C3 Rb
2(t3) Rb

2(t3)
C4 Ra

3(t4)

Consider the association problem at the fusion node at time
t3. The fusion node receives local updates for tracks R1(t3)
and R2(t3) and must associate them with existing composite
tracks C1(t3) and C2(t3) or create new composite track(s) as
it does in this example (i.e., C3(t3) is created using R2(t3)).

The track associations can be represented using an associ-
ation matrix. Shown in Figure 1 is an upper triangular matrix
with each element of the matrix representing a particular
pair of tracks. An “X” in any location indicates a positive
association of the corresponding pair of tracks (by implication,
any location without an “X” indicates a negative association).
If there are n total tracks to be partitioned, then there are Cn

2

(a standard notation for “n-choose-2,” which is the number
of ways that n objects can be taken two at a time without
repetition) or n(n − 1)/2 possible pair-wise associations.
Finally, some elements of the matrix have a circle in them;
these represent positive associations that should have been
made. We shall make use of these circles when we define
the incorrect and missed associations.

B. Venn Diagram Representation of Pairwise Associations

Figure 1 shows how the association of data can be repre-
sented as a collection of pairwise associations. We define the
probabilities of missed association and incorrect association
and calculate them using their frequencies of occurrence,
which requires that we define a number of event sets. The first
event set will be the set of all possible pair-wise associations
between the collection of local tracks received over some time
period of interest. Given a collection of n tracks, let A denote
the set of all possible pairwise associations, and let |A| denote

Fig. 1. Partition over all received local tracks (up through t3) represented as
a pair-wise association matrix.

its size or cardinality. As shown in Figure 1, for n tracks,
|A| = n(n − 1)/2. We shall divide this set into two disjoint
subsets:

• Let AT be the set of all true associations based on the
truth entities corresponding to each data item in a pair.
Thus, AT contains the pairs of data items that should
be associated because they are both associated with the
same truth entity (i.e., the circled cells in Figure 1).

• Let AF be the set of all false associations based on
the truth types corresponding to each track in a pair.
Thus, AF contains the pairs of data items that should
not be associated because they are each associated with
a different truth type.

As defined, AT

⋃
AF = A and AT

⋂
AF = ∅. The Venn

diagram in Figure 2 shows the set of all pairwise associations
partitioned into the sets AT and AF .

Fig. 2. Partition of all pairwise associations into true and false associations.

Next, consider a partition of the space of all pairwise
associations into the set of positive associations, P (i.e., those
associations made by the association algorithm) and the set of
negative associations, N (i.e., those associations not made by
the algorithm). These are shown in Figure 3.

Finally, putting all these sets into a single Venn diagram
as shown in Figure 4 allows us to mathematically define the
probabilities of missed and incorrect association. The figure
shows the four sets of interest that correspond to the events



Fig. 3. Partition of all pairwise associations into positive and negative
associations (i.e., those made by association algorithm).

Fig. 4. Partition of all pairwise associations into true and false assocaitions.

defined in Section III, and we now define them in terms of set
operations:

• Correct Positive Associations are also referred to as
correct associations and defined as:

Correct Positive Associations = P
⋂
AT (1)

• Missed True Associations are also referred to as missed
associations and defined as:

Missed True Associations = N
⋂
AT (2)

• Incorrect Positive Associations are also referred to as
incorrect associations and are defined as:

Incorrect Positive Associations = P
⋂
AF (3)

• Correct Negative Associations are defined as:

Correct Negative Associations = N
⋂
AF (4)

C. Missed and Incorrect Association Probabilities

We have defined the missed and incorrect association sets.
Each of these sets includes all pairwise associations that are
categorized as missed or incorrect. To convert these to prob-
abilities, we must define the space over which these pairwise
association events occur; these would then be the denominators

for finding the probabilities. We define the probabilities of
missed and incorrect association as follows:

P (Incorrect Association) ≡ P (False Assoc.|Pos. Assoc.)

=
|P

⋂
AF |
|P|

P (Missed Association) ≡ P (Neg. Assoc.|True Assoc.)

=
|N

⋂
AT |

|AT |
(5)

Note that these are conditional probabilities since the de-
nominator is not the set of all possible pairwise associations,
A. By choosing different spaces over which to calculate the
probablities we are “grading” the association algorithm in two
different ways: the incorrect associations are evaluated based
on what the algorithm did do, while the missed associations
are evaluated based on what the algorithm should have done.

An alternative is to use the set of all possible pairwise
associations for both denominators, which grows as n2 where
n is the number of tracks, while the number of associations
that should be made merely grows as n. Thus, an algorithm
could fuse nothing (i.e., make each local track correspond to its
own composite track) and the probability of missed association
would go to zero as the number of local tracks increases, which
is clearly undesirable.

With these definitions we can now calculate the probabilities
of missed and incorrect association using the pairwise associ-
ation matrix discussed in Section III-A. Refering to Figure 1,
note that everything is there to calculate the probabilities. The
X’s indicate the positive associations (the set P), and the
circles indicate the true associations (the set AT ). The missed
associations are those circles that do not have an X in them,
and the incorrect associations are those X’s that do not fall
within a circle. For this example:

P (Incorrect) =
0

4
= 0.0

P (Missed) =
2

6
= 0.33 (6)

For comparison, consider the purity and conciseness metrics.
At time t3 we note from Table II that there is a single
composite track (C1) on Entity a but two composite tracks
(C2 and C3) on Entity b. Thus, the conciseness is 50%. Each
of the three composite tracks comprise local tracks associated
with the same truth entities, so the purity of all three tracks is
100% and, therefore, the overall purity is 100%.

Continuing with the same example, the pairwise association
matrix at time t4 is shown in Figure 5. Using this matrix the
probabilities of missed and incorrect association are:

P (Incorrect) =
3

9
= 0.33

P (Missed) =
6

12
= 0.5 (7)

Consulting Table II again, there are two composite tracks (C2

and C3) on Entity b. Depending on how the truth entity of
composite track C1 is evaluated, it may be associated with



Fig. 5. Association matrix at time t4 showing which associations were made
by the algorithm and which should have been made by the algorithm.

Entity a or the false entity. If it is associated with Entity a,
then there would be two composite tracks on Entity a, and the
conciseness would be 0%; otherwise, the conciseness would
be 50%. Note that C2, C3, and C4 are 100% pure while C1

is 75% pure, yielding a total purity of 93.75%.

D. Growth of Pairwise Association Matrix

As is evident from the above discussion and example, as
time progresses and more local tracks are received, the size
of the pairwise association matrix increases. Not only is this a
computational problem, it will also diminish the value of the
metrics in the sense that at any point in time, the probabilities
of missed and incorrect association include all association
decisions made since the start of the fusion process. The
metrics should quantify the performance of the algorithm
around the time at which the metrics are calculated.

Consider a case in which a composite track was associated
with truth Entity a for some period of time before switching
to truth Entity b. During the time period around the switch, the
probability of incorrect association should reflect this mistake.
If, however, the accumulation of local tracks persists in the
association matrix, the metrics will still include these incorrect
associations long after they occur. Thus, the association matrix
should consider only local tracks received during a sliding time
window. In this way, calculating missed and incorrect associ-

Fig. 6. Timeline of four sources of local track updates and the sliding window
used to calculate the association metrics.

ation probabilities at time tj will quantify the performance
of the association algorithm around time tj and not include
decisions made since the beginning of the tracking problem.
The size of the time window is a design parameter that should
be a function of the update rate of the local tracks. A graphic
illustrating the sliding window is shown in Figure 6.

E. Analogous Metrics in Information Retrieval Domain

We now discuss performance metrics defined in the informa-
tion retrieval domain; there is a direct analogy between the data
association problem (in tracking) and the information retrieval
problem. In the information retrieval domain, an algorithm
searches for and retrieves documents that are deemed relevant
given one or more keywords of interest to the user. Metrics
were developed to quantify how well the information retrieval
algorithm performed. The space of documents is divided into
two sets in two different ways. First, the documents are divided
into the set of relevant documents and not relevant documents.
Where “relevant” means that the document is of interest to the
user based on the search keywords. Next, the documents are
divided into the set of retrieved documents (those gathered
by the algorithm for the user) and the set of not retrieved
documents. Given these set definitions, precision is defined
as the fraction of retrieved documents that are relevant, and
recall is defined as the fraction of relevant documents that are
retrieved by the algorithm ([8], [9]).

These two metrics are analogous to our probability of
incorrect and probability of missed association as we now
show. First, note that the items that we are associating are
measurements to tracks or tracks to tracks. In information
retrieval, the items to be associated are documents and the
keywords used in the search. The following indicate the
equivalence in terminology between the two domains:

Documents ⇐⇒ Measurements/Tracks
Retrieved documents ⇐⇒ Positive Associations
Relevant documents ⇐⇒ True Associations

Based on these equivalencies, the following relationships relate
our metrics and the information retrieval metrics:

Precision = 1− P (Incorrect Association)
Recall = 1− P (Missed Association)

One difference between the tracking and information retrieval
problems is that the tracking problem has a time element to it
as associations are made repeatedly as sensor data is received
over time, while the information retrieval is really a single
event, i.e., more of a static problem.

IV. EXAMPLE CASES FOR CALCULATING THE
ASSOCIATION METRICS

In this section we present some examples of calculating
the metrics. Some are notional and some are from running a
simulation, generating local tracks, and feeding the local tracks
to a T2T fusion algorithm. We first consider two notional
examples that represent extremes of association algorithms.

A. Two Notional Examples of Association

When studying the performance of an algorithm or metric,
it is often useful to consider theoretical scenarios that are at
the extremes of performance. In this section we shall do just
that by considering an association algorithm that associates all
local tracks together and an association algorithm that does not



associate any tracks together. For both of these examples, we
shall consider the following scenario. Suppose that there are m
entities being tracked in the surveillance region, and that there
are k local trackers, each of which have one track on each
of the m entities. Suppose that the time window discussed
previously is such that within the window there is a set of
tracks on all entities for each local tracker. The association
matrix would have dimensions mk × mk. For example for
three entities and two trackers, the pairwise association matrix
would appear as in Figure 7. There are a total of mk(mk−1)/2
pairwise associations possible. The number of true associations
(i.e., those that should be made) can easily be calculated as
m

∑k−1
i=1 i = mk(k−1)

2 .

Fig. 7. An example pairwise association matrix for three entities and three
local trackers (and a window that includes one set of updates from both
trackers).

For the case of an aggressive association approach there
would be X’s everywhere since all tracks are fused into a
single track. In this case the probability of missed is zero, and
the probability of incorrect is given by:

P (Incorrect Association) =
mk(mk−1)

2 − mk(k−1)
2

mk(mk−1)
2

=
k(m− 1)

km− 1
≈ m− 1

m
(8)

Note that for the case of aggressive fusion, the probability
of incorrect goes to one as the number of entities, m, gets
very large. This is expected since as these increase, there
are many more false associations than the number of true
associations. On the other hand, for the case of extremely
conservative fusion in which the association algorithm never
combines tracks from difference sources (this is really “no
fusion”), the probability of incorrect is 0, but the probability
of missed association is 1.0.

B. Examples from Simulated Data

We now calculate the new metrics from results of a few
different scenarios. In these examples, a set of surface entities
are simulated, along with simulated sensor measurements from
multiple sensors. Local trackers process the simulated mea-
surements to generate local tracks, which are then processed
by a T2T fusion algorithm to produce composite tracks. The
new association metrics are calculated based on the perfor-
mance of the T2T associaton algorithm. One of the scenarios is

characterized by a failure to associate local tracks with existing
composite tracks, while the other scenario is characterized by
both incorrect and failed associations as we now describe.

1) Example 1: No Multi-Source Fusion: In this example,
we ran a simulation with 20 surface entities that were widely
separated, avoiding any incorrect associations. We simulated
radar data and Automatic Identification System (AIS) data on
these entities and processed the measurement data with local
trackers. There are two platforms, each producing its own set
of radar and AIS tracks. Platform A collects sensor data for the
first four hours of the scenario, after which it stops collecting,
and Platform B begins collecting data until the end of the
scenario. The local radar tracks and AIS tracks were processed
by a T2T fusion algorithm. The results of the association were
evaluated using the new metrics. The T2T fusion algorithm
was configured to avoid associating local tracks from different
local trackers. There is still fusion taking place in that the T2T
association algorithm does fuse local tracks to the composite
tracks previously created on those local tracks, i.e., each local
radar track and each local AIS track have a corresponding
composite track to which all future updates on each local track
are fused. Thus, there are generally 40 composite tracks; 20
that correspond to the 20 AIS tracks and 20 that correspond
to the 20 radar tracks.

For this scenario, the percent incorrect and missed associa-
tions are plotted as a function of time for the 8.5 hour scenario
in Figure 8. We chose a window size of 600 seconds for
including tracks in the association matrix. There are two points
about the graph worth noticing. First, the plot generally hovers
around 18% missed association rate. Second, there is a spike
that occurs at four hours. It is easy to determine that if the
update rate of the radar tracks and the update rate of the AIS
tracks is approximately the same, then the missed association
percent averages 50%. In this scenario, the AIS update rate is
approximately every 10 seconds, while the update rate for the
radar is approximately 80 seconds, so the actual probability
of missed association is not 50% but down near 18%.

The spike in missed associations at four hours occurs due
to the receipt of a new set of local tracks from Platform B
as it first comes online. As configured, the T2T fusion system
will not fuse the initally received tracks from Platform B to
any existing composite tracks, which is to say that it will
not associate the newly received local tracks with the local
tracks received from Platform A. Thus, for a short time period
just after four hours, there are extra composite tracks on each
entity, leading to a spike in the percent of missed associations.
Since Platform A goes offline at four hours, the local tracks
previously received from Platform A do not continue to get
updated. As the local tracks from Platform A move outside
the sliding window for evaluating association decisions, they
drop out of the association matrix and the spike in missed
associations disappears. The missed association percent returns
to what it was during the first four hours of the scenario.

2) Example 2: Increased Association Ambiguity: In this
second example, we simulated 50 entities that move as a
group so that T2T association ambiguity exists and leaves the



Fig. 8. Percent incorrect and missed associations plotted as a function of
time for the case of no multi-source fusion. The spike results from newly
received tracks from Platform B not being associated with existing tracks
from Platform A.

algorithm prone to association mistakes. As in the previous
example, Platform A is online for the first four hours of the
scenario and generates two sets of local tracks. One set is
based on simulated radar measurements, while the other set is
based on simulated bearings-only measurements. At four hours
Platform B takes over surveillance and also sends two sets of
tracks to the T2T fusion node: radar tracks and tracks derived
from bearings-only measurements. Depending on the size of
the local track covariances relative to the entity spacing, there
are times in the scenario where T2T association uncertainty
exists, resulting in incorrect associations as shown below. The
general behavior of the entities is:

• Hours 1 to 3.25: The entities start very close together and
spread out as they move as a group on a linear path.

• Hours 3.25 to 5: Entities slow down towards zero. Many
are stopped during this period. They also move farther
apart.

• Hours 5 to 7.5: Entities turn around (rather abruptly) and
return to where they started.

• Hours 7 to 8.5: Entities slow down to a stop. Most are
stopped for a large part of the time.

A plot of the speed versus time for all 50 entities is shown
in Figure 9. It is important to note that when the entities
slow down, the probability of detection for the radar is quite
reduced. In fact, many of them go undetected. Examining the
local tracks we found that 30 of the entities do not have any
radar track on them between 3.5 and 5 hours.

Fig. 9. Plot of all 50 entity speed profiles over time. Most slow down towards
zero during the three to five hour interval.

We ran the resulting radar and bearings-only tracks through
the T2T fusion algorithm and calculated the new metrics
to evaluate the T2T association. The results are shown in
Figure 10. During the first hour only radar tracks are gen-
erated on the entities, and there is a small number of missed

associations that result from a few composite track breaks.
At approximately 2.25 hours, the bearings-only tracks begin
arriving at the fusion center and, due to the large uncertainty in
the track state estimates (relative to the entity spacing, which
is fairly tight), there is significant T2T association ambiguity
that causes significant incorrect association.

To help highlight the amount of T2T association uncertainty
at various times in the scenario, we have generated two plots.
In Figure 11 is a plot of the square root of the trace of the
horizontal position covariance for all 50 tracks, which assesses
the uncertainty in the bearings-only derived tracks. The black
lines correspond to the tracks from Platform A, while the
grey lines correspond to the tracks from Platform B. The
second plot is a measure of the distance between the entities.
To quantify the spacing of the entities, we simply found the
mean position of a collection of entities at a particular time,
calculated the distance from each entity to the mean, and found
the average over all these distances. A plot of this is shown
in Figure 12. We do not always have truth positions on all
50 entities at all times; therefore, we sometimes get a subset
of the entities that are closer (this accounts for some points
on the plot that appear below the “line”). Note that between
two and three hours, the entities are very close (Figure 12)
resulting in the rapid increase in incorrection associations as
the entities start moving between two and three hours.

Fig. 10. Large uncertainty in bearings-only tracks leads to an increased rate
of incorrect associations.

The percent of incorrect associations begins dropping just
before three hours and continues to drop until five hours, at
which point the incorrect associations are close to zero. There
are two reasons for this. One reason is that many of the entities
stop being detected by the radar, resulting in many less radar
tracks that have to be associated and, therefore, less chance for
incorrect or missed associations. More importantly, the entities
are farthest apart, as shown in Figure 12, thereby reducing
the T2T association ambiguity. Indeed, the precipitous drop in
incorrect associations from three to five hours is accompanied
by a rapid increase in the spacing of the entities.



The curve for missed associations generally follows the
shape of the curve for the incorrect associations. Often (though
not always), when we incorrectly associate local tracks with
composite tracks, we simultaneously fail to associate these
local tracks with the correct composite tracks. The missed
associations are, thus, of two types. First, newly received local
tracks from Platform B fail to associate to existing composite
tracks and are used to create new composite tracks. Second,
newly received local tracks from Platform B are associated
with existing composite tracks, but the association is incorrect;
thus adding to both the incorrect associations and missed
associations.

Fig. 11. Square root of the trace of the bearings-only track position
covariances plotted for all 50 entity tracks over time.

At five hours, the entities begin to move a bit closer
together as seen in Figure 12 and then stay at about the
same spacing until 7.25 hours. The entities moving closer
probably contributes to the increase in incorrect associations
between five and six hours. Also contributing to the incorrect
associations are two tracks that appear to have much larger
covariances than the others as seen in Figure 11. The incorrect
associations start to increase between 6 and 7.25 hours. While
the entity spacing does not change much during this time, note
that there is a rapid increase in the covariance size for all 50
tracks.

Finally, the size of the covariances drop rapidly around
7.5 hours, though the percent of incorrect still increases. The
explanation is that while the covariances get smaller, the
entities move much closer together from 7.3 hours to 8 hours,
again causing association ambiguity and the continued rise in
incorrect associations. Additionally, it turns out that there are
also many newly created composite tracks during this last hour
of the scenario, which is responsible for the increase in missed
associations.

V. CONCLUSIONS

We have defined two new metrics for quantifying the perfor-
mance of a data association algorithm that applies to both M2T
fusion and T2T fusion algorithms. The probability of missed
association and probability of incorrect association directly
evaluate the decisions made by the association algorithm

Fig. 12. Plot of the mean distance of an entity in the group from the mean
position of the group. This gives a sense of the spread of entities.

and give the algorithm developer the ability to analyze the
detailed behavior of the association algorithm at any point
in time during a tracking scenario. We also showed how
these metrics relate to the precision and recall metrics used in
the information retrieval domain. As with any metric, usage
over time will determine whether the new association metrics
defined in this paper are more useful to algorithm developers
than existing metrics. In presenting examples, notice how the
plot of the metrics was used to help direct analysis of results in
order to understand what happened and why it happened; this
is how some metrics also serve as a great aid to performance
analysis. Continued work will involve running the metrics on
more tracking scenarios and comparing the results to the other
metrics discussed here, purity and conciseness.
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