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Abstract—Recent advancements in reinforcement learning tech-
niques demonstrate an ability to make decisions in high dimen-
sional state spaces and complex real-time strategy games. In
contrast to supervised learning which features large data sets,
there are relatively few existing environments for training rein-
forcement learning agents. In addition, small differences in re-
wards or action spaces can drastically change the difficulty and
results of the training environments. Benchmarks seek to tackle
both of these challenges by creating common environments,
in the form of “Gyms” to train and compare reinforcement
learning techniques, approaches, and algorithms. Many gyms,
such as the classical control and Atari games environments, have
become standard in new research on reinforcement learning.
Researchers can easily compare and benchmark competing so-
lutions across publications on these universal baselines enabling
rapid innovation and collaboration. However, there are cur-
rently no standard set of environments for aerospace problems,
and many of the gyms in the literature do not include safety con-
straints or run time assurance systems that intervene when the
reinforcement learning agent violates safety constraints. This
manuscript describes the development of the Aerospace SafeRL
Framework and accompanying Aerospace SafeRL Benchmarks
that include interactive environments, safety constraints, soft-
ware interfaces for run time assurance safety monitors with
base implementations, and an initial set of baseline solutions.
This initial set of scenarios introduces simple RL environments
that expose the kinds of motion patterns, dynamics, and safety
constraints encountered in air and space problems in 2D and 3D.
This manuscript also describes standardized evaluation metrics
for these environments to provide a consistent performance
measurement with aerospace relevance. These benchmarks pro-
vide a structured foundation for future reinforcement learning
algorithms, run time assurance designs, and neural network
verification techniques for the aerospace domain.
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1. INTRODUCTION
Reinforcement Learning (RL) has recently demonstrated
prowess that surpasses humans in both high dimensional
decision spaces like Go [1] and in complex real-time strategy
games like StarCraft [2]. In aerospace, RL could provide
new solution spaces for complex control challenges in areas
ripe for autonomy such as urban air taxis, package delivery
drones, satellite constellation management, in-space assem-
bly, and on-orbit satellite servicing. Generally, advancements
in machine learning technology, including RL, have de-
pended on common frameworks and benchmarks to facilitate
collaboration and competition within the research commu-
nity. The majority of RL research focuses on a standard set
of benchmark environments, such as toy control problems
or Atari Games [3], that excludes safety critical aerospace
problems and applications. While there have been a few
papers applying RL to hypothetical aircraft and spacecraft,
the environments are ad hoc and do not feature significant
investment from the AI, academic, or industrial community.
In contrast to video games, and therefore much of the existing
corpus of RL research, aircraft and spacecraft are safety and
mission critical systems, placing aerospace solutions in the
category of SafeRL [4]. In aerospace applications, a poor
decision from an RL agent could result in a loss of life in the
air domain or loss of a highly valuable space-based service
in the space domain. Although some progress has been made
towards benchmarks for safety [5], the environments do not
feature run time assurance (RTA), which limits the current
research.

This paper documents a new effort to close the application
gap in RL research by providing air and space benchmark
environments, including safety constraints and RTA architec-
tures, within in the Aerospace SafeRL Framework. Imple-
menting the OpenAI Gym API [3], these environments are
compatible with most RL training frameworks and provide
a common testing ground for aerospace-centric techniques
and solutions. Each environment provides an interactive
simulation for RL agents to experiment on and learn so-
lutions. In each domain, multiple dynamics models of
varying detail are available that provide differing levels of
abstraction or difficulty to the agent. In the air domain,
the rejoin task features a wingman aircraft agent learning
to follow a lead aircraft in formation flight. In the space
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domain, a docking task features a deputy spacecraft agent
learning to dock with a chief spacecraft while they orbit a
third central body. Additionally, each environment includes
a variety of safety constraints, such as velocity limits and
safe separation requirements. The ability of RL solutions to
comply with these constraints while completing the primary
task is measured and quantified. Flexible software modules
allow custom configurable reward shaping and observation
formatting allowing research teams to rapidly explore pos-
sible solutions and problem limitations. By remixing and
extending the modular models and components, new environ-
ments that address the future challenges of aerospace RL can
be built. Thus, the Aerospace SafeRL Framework provides
the community with the common ground it needs to advance
RL within the aerospace domain. This paper describes the
environments, setup of the framework, and example training
results.

The rest of this paper is organized as follows. First, an
introduction to RL concepts applied to controls, SafeRL
approaches including RTA, and considerations for metrics to
evaluate SafeRL approaches are discussed. Second, each of
the five initial environments in the SafeRL framework are
described. Third, an overview of the Aerospace SafeRL
framework architecture is provided. Fourth, metrics used to
evaluate the framework are presented. Fifth, baseline perfor-
mance of the benchmarks is presented. Finally, conclusions
and recommendations are made for follow on research.

2. REINFORCEMENT LEARNING FOR
CONTROL

This research explores the use of SafeRL in aircraft and
spacecraft control. This section briefly compares RL to tradi-
tional control theory concepts, describes RL agent learning,
introduces the default RL library used in the framework,
discusses SafeRL approaches, describes RTA approaches,
and finishes with considerations for the evaluation metrics
selected later in the paper.

Comparing Control Theory and Reinforcement Learning
Concepts

In this paper, RL is used in an aerospace control context.
Here, the controls theory and RL terms are compared. Where
applicable, equivalent control theory and RL terms are listed
together separated by a “/” with the controls term coming
first. Control theory and RL share a common concept of
a system state, which are variables that describe the plant
/ environment such as position and velocity. Both control
theory and RL have a notion of partial observability, where
a measurement / observation may not fully describe the
system state but could be used to estimate it. A discrete or
continuous control input / action is determined by a control
law / policy, which is a function of the current state or partial
observation that is optimized to minimize a cost function in
controls or maximize a reward function in RL. In response
to this action, the environment state evolves in accordance
to a deterministic or probabilistic state transition function.
In Aerospace SafeRL, state transitions are modeled with
deterministic physics dynamics models, as is typically done
in controls.

Reinforcement Learning Agents

RL agents are composed of any or all of the following:
a policy, value function, and state transition model. The
policy, denoted by π, yields a probability distribution of

Table 1. Comparison of Control Theory and Reinforce-
ment Learning Concepts

Control Theory Reinforcement Learning
Plant Environment

x ∈ X state s ∈ S state
y ∈ Y measurement o ∈ O observation

Controller Agent
Control Law Policy (π)

u ∈ U control input a ∈ A action
J cost function R reward function
xk+1 = f(xk, uk) P(st+1|st, at)

(a) feedback control (b) reinforcement learning
Figure 1. Comparison of simple feedback control and
reinforcement learning models

potential agent actions as a function of the current state,
π(a|s) = P(at = a|st = s). It may be stochastic or
deterministic. The value function estimates the expected
future discounted reward given a state under a given a policy,
vπ(s) = Eπ[Rt+γRt+1+γ2Rt+2+...|st = s]. Similarly, the
state-action value function, Qπ(s, a), estimates the expected
future discounted rewards given an action and state under
a given policy. Value-based reinforcement learning meth-
ods derive their policy by greedily maximizing their value
function while policy based methods directly parameterize
a policy function. Model based RL methods utilize a state
transition model, P(st+1|st, at), to estimate the next state
given the current state and policy selected action. Other
model-free methods do not explicitly model state transitions
and instead rely on only their policy and/or value functions.

Explicitly tabulating these function outputs with large state
and/or action spaces is intractable. Deep reinforcement
learning addresses this by smoothly approximating the agent
component functions with deep neural networks. Each net-
work is composed of a series of layers that sequentially
apply a linear transformation, parameterized by weight and
bias matrices, and non-linear activation function to the input
vector to produce a rich, non-linear output. As the agent
interacts with the environment and receives reward feedback,
the weights and biases of the network layers are updated
via gradient descent optimization to better approximate their
target quantities or produce an action that better maximizes
expected future discounted reward.

RL agents learn by interacting with and receiving reward
feedback from the environment, a representation of the prob-
lem task the agent learns to solve. These interactions are
typically modeled with computer simulations, but may pro-
duced with physical simulations or real task experience. A
sequence of environment-agent step interactions, formally
the tuple of observation, action, and reward at a time t, from
the initial state to terminal end state of a task is called an
episode. Subsequences of episodes are called trajectories
and trajectories containing terminal states are called rollouts,
although this nomenclature is flexible and may vary. In each
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training iteration, the agent interacts with the environment
with a frozen policy, fills a training buffer with those interac-
tion experiences, and finally samples from said training buffer
to perform gradient descent updates. The gradient descent
update occurs in mini-batches over K full walks, or epochs,
of the training buffer.

Reinforcement Learning Library

Aerospace SafeRL and the results presented in this paper are
built around the Ray RLlib framework [6] which is designed
for scalability and multi-agent RL; however, the environ-
ments conform to the community standard Open AI Gym
API [3] and can be used with any compliant RL framework.
The baseline performance agents presented in this paper are
composed of a standard shallow multilayer perceptron policy
network with tanh activations trained with Proximal Policy
Optimization (PPO) [7]. PPO is an on-policy, actor-critic
policy gradient method whose robustness and efficacy has
made it the defacto baseline approach for many RL problems
including continuous control. As a policy gradient method, it
is efficient in tasks with large or continuous action spaces.
By clipping the surrogate objective function, PPO limits
short term changes to the policy network and greatly reduces
catastrophic forgetting, sudden performance collapses caused
by excessive training updates common in RL algorithms [8].
While PPO is a suitable choice for these problems, it is
possible and encouraged to apply alternative RL algorithms
to these benchmark tasks.

Safe Reinforcement Learning

When an RL agent is in control of a physical system, such
as a robot, aircraft, or spacecraft, ensuring safety of that
agent and the humans who interact with it becomes critically
important. SafeRL approaches learn a policy that maximizes
reward while adhering to safety constraints [4]. Approaches
to SafeRL fall under the category of reward shaping which
incorporates safety into the reward function, or shielding
(i.e. RTA) [9], which monitors the RL agent outputs and
intervenes by modifying the action to ensure safety. These
benchmarks incorporate both approaches. Penalties are given
for violating safety during the training process, and the envi-
ronments are designed to incorporate different RTA designs
and penalties for their use during training.

Run Time Assurance Approaches

RTA is an online safety assurance technique that filters po-
tentially unsafe inputs from a primary controller in a way
that preserves the safety of the system when necessary. The
control system is divided into a performance-driven primary
controller and a safety-driven RTA filter as shown in Figure
2, where the components outlined in red have low safety
confidence and the components outlined in blue have high
safety confidence.

Figure 2. Feedback Control System with RTA

In this system, the primary controller first determines a de-
sired control input udes given the state x, which is passed
to the RTA filter. If udes is determined to be unsafe, the
RTA filter will intervene and pass a safe action to the plant,
referred to as uact. If udes is determined to be safe, the RTA

filter passes the action through unaltered. This control system
structure allows the designer to isolate components with low
safety confidence and assure that the entire system is safe. For
this paper, the primary controller is the RL agent, the plant is
the RL environment, and udes is determined given the policy.
By using RTA, the system could be designed such that the RL
agent’s only objective is to optimize performance, and RTA
can be relied on to assure safety. However, in this first set of
benchmarks, safety is primarily dealt with via reward shaping
(penalizing unsafe actions).

The Aerospace SafeRL Framework was designed considering
two types of RTA filters: Simplex based and Active Set
Invariance Filter (ASIF) based approaches. For both ap-
proaches, a set of inequality safety constraint functions h(x)
are first defined, where the state x is considered to be safe if
h(x) ≥ 0. Simplex based approaches simply switch between
a primary controller and backup controller [10]. In this case,
the primary control input udes is used if it is determined to
be safe according to the safety constraints, and otherwise the
backup control ub is used. One possible implementation of a
Simplex filter is as follows, where φudes(x) is a prediction of
the state x under the desired control udes.

Simplex Filter

uact(x) =

{
udes(x) if h(φudes(x)) ≥ 0
ub(x) if otherwise

(1)

ASIF-based approaches use an optimization algorithm to
minimize deviation from the primary control signal while
still assuring safety [11, 12]. The optimization objective
maintains safety by inhibiting progression of the plant state
space outside of the safe set given a set of M control
invariant safety constraints BC(x,u) [13], derived by ap-
plying Nagumo’s condition [14] to the safe set (i.e. con-
straining the plant’s state transition flow with respect to the
gradient of the safety constraints at the boundary). One
possible implementation of an ASIF filter is as follows.

Active Set Invarance Filter

uact(x) = argmin ‖udes − u‖2

s.t. BCi(x,u) ≥ 0, ∀i ∈ {1, ...,M}
(2)

Assuming control affine dynamics, a continuous-time system
model is given by,

ẋ = f(x) + g(x)u (3)

To enforce Nagumo’s condition around the boundary of the
set created by h(x), the barrier constraints can be defined as,

BC(x,u) := Lfh(x) + Lgh(x)u + α(h(x)) ≥ 0 (4)

where Lf and Lg are Lie derivatives of f and g respectively,
and α is a class κ strengthening function used to relax the
constraints away from the boundary.

Considerations for Benchmark Comparison Metrics

Measuring the performance of the agent on a task and ag-
gregating over multiple episodes can be used to gauge the
effectiveness of an RL agent. Section 5 describes the various
performance, efficiency, and safety metrics proposed for the
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Aerospace SafeRL Framework. While the ultimate goal is to
produce an agent with the best possible performance by the
end of training, it is common to evaluate agent performance
at different points during the training process as well as agent
performance after training.

Training Curve Insights—Training curves, like those shown
using TensorBoard, are a useful measure of incremental per-
formance as well as stability of the RL solution. The most ef-
ficient way to quantify agent performance improvement while
training is to leverage evaluation episodes generated during
the training process. While evaluation episodes generally
constitute a representative proxy for true policy performance
in on-policy methods such as PPO, there are some potential
drawbacks depending on RL algorithm, hyperparameters, and
hardware resources [15]. For example, individual training
iterations may utilize relatively low numbers of episodes if
the train batch size is small or episodes are long, resulting
in poor sampling and noise. Additionally, because iterations
are defined by numbers of interactions, and not by number
of episodes, a single episode may be split up across two
or more iterations, obfuscating which iteration the agent
behavior represents during evaluation. Ray RLlib utilized by
Aerospace SafeRL supports metrics logging of both train-
ing episodes and evaluation episodes via TensorBoard and
CSV. Performance of RL agents may exhibit instability and
fragility during the training processes. This can come from
random noise in episode initial condition sampling or large
gradient updates to the agent model overshooting and degrad-
ing quality. Note that this process is not necessarily bad, it is
often desirable to leave fragile local optimum to find a better,
more stable global optimum. While PPO is more robust to
these types of degradation, it is still beneficial to assess the
stability of and average performance over many episodes to
select the best model parameters checkpoint.

Addressing Stochastic Results—As alluded to earlier, initial
conditions for episodes are drawn randomly. This ensures
that during training and evaluation the agent encounters a
variety of conditions, reflecting the unpredictability of real-
world conditions. However, due to sampling noise, it is
necessary to sample a large number of episodes during evalu-
ation to ensure that good/bad performance isn’t due to being
lucky/unlucky. It is possible to use a predetermined set
of evaluation initial conditions to promote fairness and test
corner cases; however, it is vital that these test cases are not
consulted during training or hyperparameter tuning to prevent
overfitting. Additionally, when evaluating training curves, it
is important to repeat the training process multiple times with
5-10 different random seeds to average out the same sampling
noise that may cause one training run to work better than
another [15].

3. ENVIRONMENTS
The Aerospace SafeRL benchmarks focus on two general
problems: training an unmanned wingman to fly in formation
with a manned flight lead, and training a active deputy
spacecraft to dock with a passive chief spacecraft. Both en-
vironments use classic aerospace dynamics models: Dubins
aircraft models [16], and Clohessy-Wiltshire relative motion
spacecraft dynamics [17] in Hill’s reference frame [18].

2D Aircraft Formation Flight

In the 2D aircraft formation flight environment, the state of
the system is defined as x = [xL, yL, ψL, vL, xW , yW , ψW ,
vW ]T ∈ X ⊂ R8, and includes the position (x, y), heading

ψ, and velocity v of the lead L and wingman W aircraft.
The control for the system is defined by u = [ψ̇W , v̇W ]T

=[uW1
, uW2

]T ∈ U ⊂ R2.

Dynamics—A dynamics of both the wingman and lead air-
craft are computed using Eq. (5).

ẋ = v cosψ

ẏ = v sinψ

ψ̇ = u1
v̇ = u2

(5)

Success Criteria— The goal of the RL agent is to control
the wingman aircraft to achieve a relative position behind
the flight lead, which flies with a constant heading rate and
velocity. The RL agent must move the wingman aircraft to
a position defined by a relative distance ρr and an aspect
angle θAA measured from the back of the lead aircraft (-xbL)
to the vector pointing to the wingman’s location, as depicted
in Figure 4. This relative position command can be converted

Figure 3. Depiction of general rejoin task

to Cartesian coordinates by Eq. 6.

xr = xL + ρr cos(ψL + π + θAA)

yr = yL + ρr sin(ψL + π + θAA)
(6)

An agent is considered successful if the error between the
wingman’s position and the commanded rejoin point is less
than a specified value ρe and if the time in the rejoin position
trejoin is greater than a threshold value tsuccess (in this case 20
seconds).

ϕformation :(
√

(xW − xr)2 + (yW − yr)2 ≤ ρe)
∧ (trejoin ≥ tsuccess)

(7)

Safety Constraint—The RL agent must learn to rejoin while
adhering to a collision avoidance safety constraint defined as
maintaining a safe minimum distance ρc.

ϕs2DAC
:=
√

(xL − xW )2 + (yL − yW )2 ≥ ρc (8)

3D Aircraft Formation Flight

In the 3D formation flight environment, the state of the air-
craft x = [xL, yL, zL, ψL, vL, γL, φL, xW , yW , zW , ψW , vW ,
γW , φW ]T ∈ X ⊂ R14 is the position (x, y, z), heading
ψ, velocity v, flight path angle γ, and roll angle φ of
the lead L and wingman W aircraft. The control for the
system is defined by u = [v̇L, γ̇L, φ̇L, v̇W , γ̇W , φ̇W ]T =
[uL1, uL2, uL3, uW1, uW2, uW3]T ∈ U ⊂ R6.
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Dynamics—The dynamics of the each aircraft are defined by
Eq. 9, originally presented in [19].

Figure 4. Depiction of general rejoin task z components

ẋ = v cosψ cos γ

ẏ = v sinψ cos γ

ż = −v sin γ

ψ̇ =
g

v
tanφ

v̇ = u1
γ̇ = u2

φ̇ = u3

(9)

Success Criteria— In a slight modification of the 2D case,
the 3D aircraft formation flight agent is considered successful
when

ϕformation :(
√

(xW − xr)2 + (yW − yr)2 ≤ ρe)

∧
(
|zW − zr| ≤

he
2

)
∧ (trejoin ≥ tsuccess),

(10)

where he is the height of the 3D rejoin cylinder centered on
the rejoin point.

Safety Constraint—The RL agent must learn to rejoin while
adhering to a collision avoidance safety constraint defined as
maintaining a safe minimum distance ρc.

ϕs3DAC
:=
√

(xL − xW )2 + (yL − yW )2 + (zL − zW )2

≥ ρc
(11)

2D Spacecraft Docking

In the 2D spacecraft docking environment, the state of an
active deputy spacecraft is expressed relative to the passive
chief spacecraft in Hill’s reference frame [18] FH := (OH,

îH, ĵH). The origin of Hill’s frame OH is located at the mass
center of the chief, the unit vector îH points away from the
Earth along a line connecting the center of Earth to OH,
and the unit vector ĵH is aligned with the orbital velocity
vector of the chief. The state of the deputy is defined as
x = [x, y, ẋ, ẏ]T ∈ X ⊂ R4, where, r = xîH + yĵH is
the position vector and v = ẋîH + ẏĵH is the velocity vector
of the deputy in Hills Frame. The control for the system is
defined by u = [Fx, Fy]T=[u1, u2]T ∈ U ⊂ R2.

Figure 5. Hill’s reference frame centered on a chief
spacecraft and used to describe the relative motion of a
deputy spacecraft conducting proximity operations (not
to scale).

Dynamics—A first order approximation of the relative motion
dynamics between the deputy and chief spacecraft is given by
Clohessy-Wiltshire [17] equations,

ẍ = 2nẏ + 3n2x+
Fx
m

ÿ = −2nẋ+
Fy
m

(12)

where n is spacecraft mean motion and m is the mass of the
deputy.

Success Criteria— The deputy is considered successfully
docked when its distance to the chief is less than a desired
distance ρd.

ϕdocking : (‖rH‖ ≤ ρd) (13)

Safety Constraint—The RL agent must learn to dock while
adhering to a dynamic velocity safety constraint that restricts
the relative velocity of the deputy to velocity limit that
decreases as it approaches the chief. The system is defined
to be safe if it obeys the following safety constraint for all
time,

ϕs2DSC
:= ‖vH‖ ≤ ν0 + ν1‖rH‖ (14)

where, ν0, ν1 ∈ R≥0, and

‖rH‖ = (x2 + y2)1/2, ‖vH‖ = (ẋ2 + ẏ2)1/2. (15)

The constraint in Eq. (17) enacts a distance-dependent speed
limit, with ν0 defining the maximum allowable docking speed
and ν1 defining the rate at which deputy must slow down as
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it approaches the chief. The values ν0 = 0.2 m/s, and ν1 =
2n s−1 are selected based on elliptical closed natural motion
trajectories (eCNMT), and further insight into this choice is
given in [20, 21].

3D Spacecraft Docking

The 3D spacecraft docking problem builds on the 2D prob-
lem by adding the z coordinates. Since the in-plane (x-
y) and out-of-plane (z) Clohessy-Wiltshire dynamics are
decoupled, this problem simply adds a z-dimension. The
state of the deputy is defined as x = [x, y, z, ẋ, ẏ, ż]T ∈
X ⊂ R6, and the control for the system is defined by u =
[Fx, Fy, Fz]T=[u1, u2, u3]T ∈ U ⊂ R3.

Dynamics—The dynamics in the z direction are given by

z̈ = −n2z +
Fz
m
. (16)

where n is spacecraft mean motion and m is the mass of the
deputy.

Success Criteria— The deputy is considered successfully
docked when its distance to the chief is less than a desired
distance ρd, as defined in Eq. 13, where ‖rH‖ = (x2 + y2 +
z2)1/2 in the 3D version.

Safety Constraint—The safety constraint also features a slight
modification:

ϕs3DSC
:= ‖vH‖ ≤ ν0 + ν1‖rH‖ (17)

where, ν0, ν1 ∈ R≥0, and ‖vH‖ = (ẋ2 + ẏ2 + ż2)1/2.

2D Oriented Docking

This is a modification of the 2D docking problem to incor-
porate spacecraft orientation. The full description of this
problem is available in a previous publication [22] and a
summary is provided here for clarity.

Dynamics—In this model, thrust is only possible from two
thrusters assumed to be perfectly aligned with the spacecraft
body x-axis xb on either side of the spacecraft. The attitude of
the spacecraft about its z-axis nrw is controlled by a reaction
wheel and the rotational equations of motion are dictated by
the conversation of angular momentum. As the inertia of
the spacecraft about that axis is Izz , the inertia of a reaction
wheel about that spin axis then D, and θ3 is the rotation of
the spacecraft about êN , measured from the êT direction to
the xb axis, the rotational equations of motion are

Izz θ̈3 = −Dψ̇ (18)

where ψ̇ is commanded acceleration given to the reaction
wheel to produce a required torque. The state of the deputy is
defined as x = [x, y, θ, ẋ, ẏ, θ̇]T ∈ X ⊂R6, and the control
for the system is defined by u = [Fx, ψ̇]T=[u1, u2]T ∈ U ⊂
R2.

The 2D docking equations are then modified to include the
the angular component and the the force of thrust in the x
direction only Fx. Then

~Fxy =

[
cos(θ3)
sin(θ3)

]
Fx. (19)

Figure 6. Hypothetical 6U Cubesat with thrusters (red)
aligned with positive and negative x-axes, a sensor (blue)
that is able to gimbal around the z-axis to any direction
within the xy-plane, and a reaction wheel (green) for
single axis attitude control aligned with the z-axis [22].

Then, (12) can be rewritten as

ẍ = 2nẏ + 3n2x+
Fx cos(θ3)

m

ÿ = −2nẋ+
Fx sin(θ3)

m

θ̈3 = − D

Izz
ψ̇

(20)

Success Criteria and Safety Constraints—The success criteria
and safety constraints for the 2D oriented are the same as the
regular 2D case, defined by Eqns. 13 and 14, respectively.

4. AEROSPACE SAFERL ARCHITECTURE
The architecture of the Aerospace SafeRL Framework was
designed with modularity in mind. This section describes the
functional components of the architecture.

Framework Architecture

The Aerospace SafeRL framework is designed to use neural
network agents and RL training algorithms from an external
library, such as Ray RLlib [5], as shown in Figure 7. By
utilizing these external libraries, Aerospace SafeRL gains
access to mature RL algorithm implementations. While
the Aerospace SafeRL Framework works best with RLlib,
Environment interaction complies with the standard OpenAI
Gym API [3] enabling any compatible RL implementation to
be used instead.

The primary contribution of the Aerospace SafeRL Frame-
work is contained within the Environment and Evaluation
modules. The Environment module, shown in green in Figure
7, provides an interactive simulation environment to receive
actions from the agent, simulate the result of taking those
actions, and return resulting observations and rewards. This
interaction is accomplished via an OpenAI Gym-compliant
interface where the following quantities are exchanged be-
tween the agent and the environment.

Obs— The observation vector of the current state of the
environment is passed from the environment to the agent.
The agent perceives the environment through this observation
vector, which can be thought of as the output of sensors in
the environment. The observation may be the result of an
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Figure 7. Aerospace SafeRL Framework Architecture.

environment which is fully-observable, i.e. Obs contains full
knowledge of the entire state of the environment, or partially-
observable, i.e. Obs contains incomplete information about
the state of the environment. Obs may also undergo transfor-
mations to make it more amenable to processing by a neural
network model. Dimensions and ranges are defined by the
environment’s observation space

Action—The desired action vector is passed from the agent
to the environment as defined by the agent’s policy π(o).
The Aerospace SafeRL Framework supports both discrete
and continuous action spaces. Valid dimensions and ranges
for actions are defined by the environment’s action space.

Reward—The reward is a scalar quantity grading the “good-
ness” of the agent’s action computed by the environment and
used by the RL training algorithm to improve the agent’s
policy. Rewards may be dense, providing frequent, short-
term feedback on actions taken, or sparse, providing infre-
quent, long-term feedback on actions taken. For example,
dense rewards may provide small rewards for getting closer
to a goal, whereas sparse rewards may only offer a single
large reward once a goal is actually reached. Rewards are
implemented as the sum of many contributing component
rewards.

Info—The information dictionary contains metadata about the
state of the environment. This dictionary is ignored during
RL, but used by Aerospace SafeRL for logging, debugging,
and evaluation.

Done—The done variable is a simple Boolean value returned
by the environment indicating that a terminal state has been
reached and the episode is concluded. The done condition
could be the result of multiple success or failure conditions.

Evaluation— The evaluation module contains utilities and
scripts to evaluate agent performance and facilitate conve-
nient usage of the framework. The evaluation module in-
cludes a set of SafeRL Metrics, described in Section 5, to
standardize the performance and safety evaluation of agents
on Aerospace SafeRL tasks. Additional scripts are provided
to evaluate trained agent performance, visualize/animate task
episodes, and generate result plots. Finally, logging of
training episodes, via custom RLlib callbacks, enables appli-
cation of these evaluation and visualization tools to increase
understanding and interpretability of the RL training process.

Environment Architecture

The Environment module is responsible for simulating the en-
vironment, determining the observation of the environment,
enforcing safety constraints, and providing reward feedback
to the agent on its actions. Building RL environments typi-
cally requires significant engineering resources and presents a
prohibitive barrier to entry for new applications and research.
The deliberate modularity and consistent bookkeeping of
the Environment module allows users of this framework to
efficiently create new experiments and analysis.

Figure 8. The Aerospace SafeRL Environment Architec-
ture.

The Environment module is subdivided into the simulation
and processors, as depicted in Figure 8. This split isolates the
two roles of an RL environment: modeling the response of
the world’s state to an agent’s actions and computing how the
new world state affects the agent. The simulation propagates
the dynamics and interactions of the individual platforms, e.g.
lead and wingman aircraft, that compose the environment.
The platforms include the RL agent as well as other agents
in the environment, e.g. the wingman that is controlled by
the RL agent, and the lead that is controlled by an external
model (in this case, scripted). From the simulated state,
the collective state of the simulations constituent platforms,
the processors compute types of metadata from state such
as status properties, agent rewards, and agent observations.
Processors are of the same type are bundled together into
managers where their outputs can be collected into the Obs,
Reward, Info, and Done outputs of the environment.

Environment Configuration

Aerospace SafeRL is designed for modularity and customiz-
ability. To that end, the Environment module is composed
entirely of modular, interchangeable components with fully
generic glue code. All components of an environment, in-
cluding the simulation platforms and processors, are specified
in a yaml config file. The environment specific config-
uration is found under the environment config portion of
the yaml config file. Just like the rest of the framework,
the environment config has a modular structure where each
individual component of the environment has an individual,
self-contained configuration dictionary. There are four pri-
mary sections in the environment config: environment objects
containing a list of individual environment object/platform
configs, status containing a list of individual status processors
configs, reward containing a list of individual reward proces-
sors configs, and observation containing a list of individual
observation processors configs. Each individual subconfig
is independently parsed into constructor parameters for the
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specified object. The individual constructed objects are col-
lected into their respective parent submodule, Simulation for
environment objects/platforms and managers for processors,
to create the full environment.

Simulation

As described above, the simulation is composed of individ-
ual environment objects. There are currently two types of
environment objects: physical entity platforms like aircraft
or spacecraft with actuators and state dynamics models, and
geometry that describes abstract regions in space such as
keep-out zones or goal areas. For example, in the rejoin
environment, the wingman is an agent platform and the
lead is an environment platform, while the rejoin region
and collision zone centered on the lead are both geometry
objects. At each timestep of the simulation, each individual
environment object performs an individual state transition
step and increments the collective simulation state. This new
simulation state is then passed to the processors to produce
the environment step output. All environment objects are
interchangeable and implement the following set of standard
properties: name, position, velocity, and orientation.

Figure 9. Aerospace SafeRL Simulation Platform Archi-
tecture

Platforms—Each platform maintains an internal state object,
potentially vectorized, to simplify atomic copying and future
trajectory prediction. The next state transition is determined
by the platform’s dynamics model which computes the future
state based on the current state and control vector. The control
vector input to the dynamics model is produced through the
successive chain of controller, RTA, and actuator. In this
case, actuator is meant generally and can describe inner
loop controls such as control surface deflection, outerloop
actuators, or more abstract forms of control such as forces
and torques. The controller produces a desired per-actuator
control in response to the current simulation state.

Run Time Assurance Module—The RTA Module within an
individual platform provides online safety assurance in the
manner described in Section 2. The Aerospace SafeRL
Framework provides a standardized interface and platform
initializer hooks to allow simple implementation and integra-
tion of custom RTA solutions. The generic RTA module inter-
face simply consists of a filter control method that produces
a safe control vector given a desired control input and current
simulation state and an intervening flag indicating when the
RTA filter is actively modifying the desired control.

Extending this simple RTA behavior are Simplex based and
ASIF based implementations. The Simplex RTA interface
splits the control filtering into a monitor stage that checks
for safety constraint violation and a known safe backup
control that takes over when the safety constraint monitor
triggers, as described by Eq. 1. Control is returned to
the agent once relative distance from the safety constraints
is achieved. The ASIF RTA generates an optimally small
control modification given a set of safety constraints as de-
scribed by Eq. 2. As developing this type of RTA can be
challenging, Aerospace SafeRL contains a base ASIF RTA
module for easy implementation and integration. For systems
with linear dynamics, custom ASIF RTA can be specified
with the ASIF RTA module interface by simply defining con-
trol invariant safety constraints from which the optimization
problem is automatically derived and solved. Constraints
are defined with RTA constraint objects and must implement
an inequality constraint function h(x), constraint gradient
∇h(x), and a softening function α(x). With these required
interface methods, the ASIF RTA module constructs barrier
constraints from the safety constraints and solves a quadratic
program to minimize the l2 norm difference between the safe
control and the desired control. If control invariant safety
constraints cannot be defined, a backup controller can also
be implemented such that optimization occurs over a backup
trajectory rather than at a single point.

Initialization— In order for the RL agent to learn a good
policy, it is necessary for it to interact with a representative
sample of possible state spaces. Simulation initialization
at the beginning of each episode is vital to both define the
bounds of the task and to provide that varied sampling.
The initializer is specified in the config and may either be
a generic random bounds initializer, which draws property
values from specified random bounds, or a custom initializer
class implemented in python. The framework also supprots
initialization dependency, where the output of an environment
object’s initializer depends on the output of another environ-
ment object. For example, the wingman aircraft is initialized
in a random point within a minimum and maximum distance
relative to the lead aircraft.

Processors

After the simulation computes the simulation state at the cur-
rent timestep, feedback must be provided to the agent. Status,
rewards, and observations are computed by their respective
processor managers shown on the right side of Figure 8. The
managers depicted in Figure 10 encapsulate the individual
processors and aggregate their outputs into the final quantity
while collecting useful metadata that can be added to logging
outputs, such as the contribution of each reward processor to
the total reward both per step and per episode. Managers also
enforce processor execution order allowing later processors
to depend on the output of previous ones. Additional status,
rewards, or observations or observations can be added by
implementing a new processor and/or specifying it in the
config file.

Processor State Machine—Individual processors are modeled
as state machines that maintain an internal state and use this
state to generate their output. As shown in Figure 11, at each
timestep of length τ , the status, reward, and observation man-
agers transition their processors’ internal states in response to
the new simulation state. Status comes first, allowing reward
and obs processors to access status values during their state
transitions and output computations. The state transitions of
the internal processor states, XS

i , X
R
i , X

O
i , and their outputs,
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Figure 10. Processor Managers

Figure 11. Processor/Manager State Machine

Si, Ri, Oi, are shown in terms of functions on the right side
of the figure where Xi corresponds to the simulation state at
time ti = iτ .

Processor Interface—The interface of a processor is consists
of two methods, increment() which propagates the inter-
nal state to the and process() which computes the proces-
sor’s output. Both methods are functions of the the simulation
state and the processor’s internal state, with an additional
input of the timestep length for increment(). Limiting
processor dependence on only these quantities enforces pro-
cessor modularity allowing them to be inserted/removed/-
modified freely. Processors may have acyclic dependencies
on the output of other status processors whose status’ are
added to the simulation state as they are called in sequence.
When specifying a processor list with such dependencies in
the config, every processor must come after its parents in the
acyclic dependency graph.

Implementing these methods to manage the processor’s state
transition properly is vital. Importantly, process() should
never modify the internal state of the processor and can there-
fore be called without modifying the environment’s Markov
state. This is particularly important for environment initial-
ization. On the other hand, increment() does modify
the environment state and is therefore called exactly once per
environment step. For a simple example, a status processor
that keeps track of the amount of time spent in a goal area may
increment an internal timer in increment() and output
the contents of the stored timer in process(). Note that
not all processors require an internal state and therefore do
not have to implement increment(). While it takes a
bit more effort, decomposing the processors into these two
separate methods ensures clean software design and broader
compatibility.

5. METRICS
This section defines metrics to compare different reinforce-
ment learning approaches, different approaches to training
with safety, different safety bounding approaches, and dif-
ferent neural network verification metrics.

The first area of evaluation is comparing agent performance
under different neural network architectures, RL algorithms,
rewards, use of RTA, and hyperparameter combinations. The
following metrics are given to evaluate the performance of
different neural networks on the aerospace benchmarks.

• Average Return (higher is better) - The average cumula-
tive reward earned by agent during an episode. This is the
standard performance metric for evaluating RL agents and is
the most direct proxy for agent performance as maximizing
this quantity is the explicit goal of RL. Note that this is not
necessarily the be-all, end-all indicator for agent quality as
reward is only a proxy for agent performance used to guide
the optimization of the policy and may be modified to that
end. Additionally, RL agents typically maximize a future-
discounted cumulative reward further amplifying this effect.
• Episode Length (lower is better) - The average episode
length across all episodes in the final iteration of training.
In the case that a task has a duration associated with it,
the time to complete the task is measured as the time to
complete the minimum requirement. For example, if the
task is that the autonomous satellite should dock with another
satellite or that a wingman aircraft should move to a specified
formation flight position with a lead aircraft, task completion
time is the time to achieve the combination of position and
velocity requirements defining docked or in formation. For
the rejoin and docking environments, this is measured with
mean episode length.
• Success Rate (higher is better) - The percentage of
episodes in the final iteration of training that successfully
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completed the goal. Ideally the last iteration will be 100%
successful; however, this is not always the case. For example,
this might be the percent of cases that successfully dock a
deputy to a chief spacecraft, or successfully place a wingman
aircraft in formation flight with a flight lead aircraft.
• Interaction Efficiency Rate (lower is better) - The number
of interactions (i.e. samples, or timesteps) required to train to
some level of performance. This measures how quickly the
agent learns to perform the task. In this work, we choose to
evaluate a rejoin and docking performance on an 80% success
mean threshold, although any criteria could be chosen.
• Control Usage (lower is better) - The amount of fuel,
cumulative control, and/or battery life used to successfully
complete the task. For example, in a spacecraft environment,
this might be measured as the total change in velocity over
the task. This is not implemented in the rejoin environment.

In SafeRL, a key set of metrics concern whether the agent
violates safety constraints during or after training. Example
metrics to measure safety are as follows:

• Safety Violation Rate (lower is better) - The percent of test
cases in which the control system did not at any time violate
safety constraints. This could be measured as a boolean value,
where if safety is violated at any time, that test or training case
is unsafe. For example, if the docking spacecraft violates the
velocity limit at any point or the wingman aircraft violates
safe separation distance, then the training or test case would
be considered unsafe.
• Episode Safety Violation Rate (lower is better) - The
percentage of time that the agent command is unsafe for
an episode. Rather than looking at the problem from a
boolean safe/unsafe episode level, this metric looks at the
severity of the violation in terms of time. For example,
this may look at the number of timesteps that the docking
simulation violated the velocity constraint or the number of
timesteps that the formation flight simulation violated the safe
separation constraint.
• Episode Violation Severity (lower is better) - A measure
of how unsafe the control action was. For example in the
formation flight case, if a wingman violates a safe separation
distance with the lead, this metric could measure how far the
wingman entered the “collision” sphere as a percentage of
the total unsafe distance. In the case of spacecraft docking
this metric may measure how much the spacecraft violated
the velocity constraint as a percent of the velocity constraint
value.

In addition to measuring safety for scenarios it can be valu-
able to look at cases outside the original training set. For
example, if training cases only included docking from up to
1 kilometer away, a series of test cases may evaluate docking
from 10 kilometers away, to see how well adapted the neural
network is to performing outside of it’s training set. A second
set of the four RL metrics and three safety metrics could be
included to specifically look at performance outside of the
training region.

Two final metrics categories could be used under special con-
ditions. In the case of standardized rewards, where evaluating
different rewards is not a part of the exploration, Mean Re-
ward (higher is better) can be used to compare approaches.
In the case where training is completed consistently on a
standard set of hardware, a Training Computation Time
(lower is better) may be used to evaluate how long it takes
to reach a fixed number of training interactions (timesteps).

6. BASELINE PERFORMANCE
This section presents a subset of the results of training and
evaluating RL agent performance on these benchmark tasks.
Full results may be generated by using the default configura-
tion files for each environment. The purpose of these results
is to establish an initial performance baseline from which fur-
ther improvements will be made by the research community.
The plots below include the total reward, task success rate,
and average episode length the agents achieved while training
on these environments. All results shown were produced with
shallow feed-forward multilayer perceptron neural networks
trained with Ray RLlib’s PPO implementation.

Discussion of training results

Figures 12 - 16 depict the results of training an agent on the
2D/3D Rejoin, 2D/3D Docking, and 2D Oriented Docking
environments. Each plot is constructed with 10 different
training runs, each with a different random seed. The shaded
in regions in the graphs depicts the 95% confidence interval
at that training environment interaction timestep over the 10
training runs. The plots generated correspond to the metrics
listed in Section 5. For the Rejoin environments, three graphs
each depict the training of the agent: success rate, episode
length, and the average return. For the Docking environ-
ments, two additional graphs describe how often the velocity
constraint described by Eq. 14 is violated as a proportion of
the entire training episode as well as the average episode’s
thrust induced ∆v, which corresponds to fuel usage. As
seen in the graphs, the 2D/3D Rejoin and 2D/3D Docking
environments all converge near 100% success rate. The
2D Oriented Docking problem converges, albeit with less
stability, to a respectable 90% success rate with some seeds
reaching reliable 99% success rates and other seeds resulting
in less effective policies. The episode length and average
return graphs also converge to a minimum and maximum
value, respectively. In all three Docking environments, while
the average return is leveling out, the average episode length
and ∆v continue to gradually decline, indicating the agent is
learning to dock more quickly and efficiently. This is shown
very clearly in Figure 19. The relative ratio of timesteps
with the velocity constraint violated, shown in Figures 13d,
15d, and 16d show the policies quickly learning to avoid the
velocity constraint boundary and maintaining a low, although
non-zero, degree of constraint violation. There is also an
observable constraint violation ratio pattern, most evident in
Figure 15d, where constraint violation increases to reach the
initial success plateau around 1e6 timesteps and then decays
as the policy refines towards better constraint compliance and
time efficiency.

The trajectories of the 2D rejoin agent at various points in
the training process are presented in Figure 17, where the
black dotted line represents the path of the flight lead, and
the colored lines represent the wingman agent with increasing
amounts of training interaction experience. The terminal
points of each path represent where the wingman successfully
rejoins. From the results, it can be seen that the wingman
aircraft learns to rejoin earlier over more training and con-
verges near an optimal trajectory. Similarly, Figure 18 shows
the trajectory of a deputy spacecraft docking with the chief
at the origin. Earlier training sessions take more indirect,
circuitous paths, but as the training progresses, the agent
learns to take a more optimal route towards the chief. Finally,
Figure 19 shows the deputy’s velocity versus it’s distance
to the chief in the 2D docking task with the velocity limit
constraint superimposed as a black dotted line (safe is below
the line). Early in the training, the velocity frequently exceeds
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(a) Average Return (b) Success Rate (c) Episode Length

Figure 12. 2D Rejoin Training Performance Metrics

(a) Average Return (b) Success Rate (c) Episode Length

(d) Velocity Constraint Violation (e) Control Fuel Use

Figure 13. 2D Docking Training Performance Metrics

the distance-dependent limit while simultaneously moving
to lower velocities in an overly-conservative effort to avoid
the velocity constraints. Later in the training processes the
docking policy manages to both avoid the velocity constraint
more effectively while maintaining a more optimal velocity
closer to the constraint bound. In addition, the policy evolves
to waste less fuel oscillating between high and low velocities,
matching the improved time efficiency with improved fuel

efficiency.

Table 2 shows the interaction efficiency of our baseline solu-
tion for each of the 5 environments. This quantity indicates
the number of timesteps the agents had to interact with the
environment before reaching an average success threshold of
80%. Unsurprisingly, the simpler the environment, the more
efficiently the agents learns a successful policy.
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(a) Average Return (b) Success Rate (c) Episode Length

Figure 14. 3D Rejoin Training Performance Metrics

(a) Average Return (b) Success Rate (c) Episode Length

(d) Velocity Constraint Violation (e) Control Fuel Use

Figure 15. 3D Docking Training Performance Metrics

7. CONCLUSIONS AND RECOMMENDATIONS
The Aerospace SafeRL Framework fills a gap in standard
aerospace application benchmarks of SafeRL. Five standard
aerospace control benchmarks at varying levels of complexity
(numbers of states, linear vs. nonlinear dynamics, etc.)
were created with a default configuration to train an RL
agent for each. These benchmarks serve as a foundation to
investigate many open SafeRL research questions as well as a

mechanism to compare the impact of different RL algorithms,
hyperparameter configurations, rewards, and RTA approaches
on aerospace control applications. Future extensions of this
work include adding additional aerospace environments by
building on the modular architecture, investigating alterna-
tive neural network architectures beyond multilayer percep-
trons, investigating the impact of novel RTA designs on the
RL training process, developing alternative RL algorithms
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(a) Average Return (b) Success Rate (c) Episode Length

(d) Velocity Constraint Violation (e) Control Fuel Use

Figure 16. 2D Oriented Docking Training Performance Metrics

Figure 17. 2D Rejoin episodes during agent training
progression.

with safety awareness, and applying neural network veri-
fication to find areas to retrain as part of the RL process.
The benchmarks are available at https://github.com/
act3-ace/SafeRL.

Figure 18. 2D Docking episodes during agent training
progression.

APPENDIX
This appendix provides additional details on the specific
implementations of the five environments.
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Figure 19. 2D Docking Velocity compared to Distanced-
Based Velocity Limit.

Table 2. 80% Success Interaction Efficiency
Environment Timesteps
2D Rejoin 0.30e6
3D Rejoin 2.3e6
2D Docking 0.34e6
3D Docking 0.66e6
2D Oriented Docking 1.5e6

Configuration File

The Aerospace SafeRL Framework’s modular architecture
facilitates editing a single configuration file to change the
task, environment platforms and their characteristics, the
observation space, rewards, and status. In some cases, the
classes in the framework defining components are listed, in
others, specific values are assigned such as initial condition
ranges, actuator limits, individual reward values.

Environment Platforms

The environment platforms are defined within the config file
in an environment configuration. Each environment platform
is given a name, a step size, state limitations, a controller
specification, and a range of initial conditions for each state
variable.

The controller specification includes the class that defines
the agent controller, the name of each actuator, whether the
actuator is operating in discrete or continuous space, the
bounds on that actuator, and the number of discrete points
in the case of discrete spaces (which include the minimum
and maximum values in the range, with the remaining points
evenly spaced within the range). For continuous actuators,
the platform performs automatic rescaling post-processing
from an assumed input range of [-1, 1] to the desired actuator
range, although this behavior can be disabled.

The default configurations are shown in Tables 3 and 4. In
Table 4, Vsafe =

[
0, 0.2 + 2n

√
x2 + y2

]
in 2D and Vsafe =

[
0,

0.2 + 2n
√
x2 + y2 + z2

]
in 3D.

Observation

The observation space can be represented using normalized
magnitudes and transformed to platform reference frames, as
summarized in the Rejoin Observation task example.

Magnitude-Normalized (MagNorm) Representation— Pro-
cessing angles or orientations can be challenging for neural
networks due to the discontinuity of angle values wrapping
around the unit circle. An alternative representation, in-
spired by the OpenAI Gym Pendulum-v0 [3] environment,
is to break a single angle, θ into two continuous values,
[cos(θ), sin(θ)]T . This logic has been extended to all vector
quantities in the mag-norm transformation. Applying the cos,
sin representation to this angle is equivalent to normalizing
the original vector. Extending this logic to vectors, the
MagNorm() function of vectors is defined as:

MagNorm(v) =

[
‖v‖, v

T

‖v‖

]
(21)

Platform Reference Frame—As actions affect the environ-
ment relative to the state of the agent, it may be desirable
to feed the agent observations from its own reference frame
rather than the global reference frame. To transform a vector
from the global reference frame to a platform’s reference
frame, it may be necessary to either move the origin to the
platform’s position/velocity, rotate the vector to the plat-
form’s local reference frame, or both. In this manuscript,
rotating a vector v in the local reference frame of a simulation
named entity, foo, is denoted vfoo

Observations—The observations fed to agents in the baseline
solutions for the Aerospace SafeRL Framework benchmark
tasks are shown in Tables 5 and 6. Each observation com-
ponent is a vector or scalar quantity described in the rows of
the observation tables. Each component is normalized and
clipped with the elementwise normalization divisor shown
in the Normalization Const column and the clipping bounds
shown in the Clipping column.The normalized and clipped
observation components are then concatenated into the final
1D observation vector and returned to the agent.

Reward

Tables 7 and 8 show individual reward component values for
the Rejoin and Docking tasks.

Rejoin—The rejoin reward contains both sparse rewards that
reward/punish success/failure at the end of the episode and
dense rewards that provide immediate feedback during the
episode. While the failure rewards are all constant, the
success reward includes an episode length component to
incentivize quicker solutions. The distance change reward
is proportional to the change in an exponential potential
function of the distance between the wingman and lead. The
“In Rejoin” reward provides a constant reward every timestep
the wingman is within the rejoin region. However, to prevent
infinite reward cycles, where the agent can enter and exit
the reward region multiple times while accumulating more
reward, the cumulative “In Rejoin” reward is refunded if
the wingman leaves the rejoin region before successfully
completing a 20 second rejoin hold. The “In Rejoin First
Time” gives a single reward in the timestep that the wingman
enters the rejoin region for the first time during an episode.
This reward component is helpful to incentivize the agent
to enter the reward region early on in the training process

14



Table 3. Rejoin Default Environment Configurations
2D 3D

Lead
Velocity (ft/s) [200,400] [200,400]

Velocity @t0 (ft/s) [250,300] [250,300]
x,y Position @t0 (ft) [5000,10000] [5000,10000]

z altitude @t0 (ft) - [12000,14000]
Heading @t0 (rad) [0,2π] [0,2π]

Wingman
Velocity [200,400] [200,400]

State Reference Lead Aircraft Lead Aircraft
Rel. Velocity @t0 (ft/s) [200,400] [200,400]
Rel. Distance @t0 (ft) [5000,10000] [5000,10000]
Rel. Angle @t0 (rad) [0,2π] [0,2π]

z altitude @t0 (ft) - [10000,16000]
Heading Rate, ψ̇ (rad/s) [-0.17,0.17] -

Roll Rate, φ̇ (rad/s) - [-0.17,0.17]
Flight Path Angle Rate, γ̇ (rad/s) - [-0.09,0.09]

Acceleration, v̇ (ft/s2) [-96.5,96.5] [-96.5,96.5]
Rejoin Region

State Reference Lead Aircraft Lead Aircraft
Shape Circle Cylinder

Aspect Angle θAA (deg) 60 60
Relative Distance ρr (ft) 500 500

Region Radius ρe(ft) 150 100
Region Height he (ft) - 300

Table 4. Docking Default Environment Configurations
2D 3D 2D Oriented

Chief
x0,ẋ0, y0, ẏ0, z0, ż0 0 0 0

Deputy
Mass, m (kg) 12 12 12

Mean Motion, n (rad/s) 0.001027 0.001027 0.001027
State Reference Chief Chief Chief

Velocity @t0 (m/s) [0, Vsafe] [0, Vsafe] [0, Vsafe]
Rel. Distance @t0 (m) [100,150] [100,150] [100,150]
Rel. Azimuth @t0 (rad) [0,2π] [0,2π] [0,2π]

Rel. Polar @t0 (rad) - [0,π] -
Attitude, θ @t0 (rad) - - [0, 2π]

Angular Velocity, θ̇ (rad/s) - - [- π90 , π90 ]
Thrust X, Fx (N) [-1,1] [-1,1] [-1,2]
Thrust Y, Fy (N) [-1,1] [-1,1] -
Thrust Z, Fz (N) - [-1,1] -

React. Wheel, θ̈ (rad/s2) - - [− π
180 , − π

180 ]
Docking Region

State Reference Chief Chief Chief
Shape Circle Sphere Circle

x offset (m) 0 0 0
y offset (m) 0 0 0
z offset (m) - 0 0
radius (m) 0.5 0.5 0.5
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Table 5. Rejoin Observations
Description Expression Normalization Const Clipping

2D Rejoin
Lead Position in MagNorm ((rl − rw)

w
) [1000, 1, 1] [-1, 1]

Wingman reference
Rejoin Region Position MagNorm ((rrejoin − rw)

w
) [1000, 1, 1] [-1, 1]

in Wingman reference
Wingman velocity in MagNorm(vww) [400, 1, 1] [-1, 1]
Wingman reference
Lead velocity in MagNorm(vwl ) [400, 1, 1] [-1, 1]
Wingman reference

3D Rejoin
Lead Position in MagNorm ((rl − rw)

w
) [1000, 1, 1] [-1, 1]

Wingman reference
Rejoin Region Position MagNorm ((rrejoin − rw)

w
) [1000, 1, 1] [-1, 1]

in Wingman reference
Wingman velocity in MagNorm(vww) [400, 1, 1] [-1, 1]
Wingman reference
Lead velocity in MagNorm(vwl ) [400, 1, 1] [-1, 1]
Wingman reference
Wingman Roll φw [π3 ] [-1, 1]
Wingman Flight Path Angle γw [π9 ] [-1, 1]

Table 6. Docking Environment Observations
Description Expression Normalization Const Clipping

2D Docking

Deputy Position rd = [xd, yd] [100, 100] [−∞,∞]

Deputy Velocity vd = [ẋd, ẏd] [0.5, 0.5] [−∞,∞]

Deputy Speed ‖vd‖ 1 [−∞,∞]

Veloctiy Limit 0.2 + 2n‖rd‖ 1 [−∞,∞]

3D Docking

Deputy Position rd = [xd, yd, zd] [100, 100, 100] [−∞,∞]

Deputy Velocity vd = [ẋd, ẏd, żd] [0.5, 0.5, 0.5] [−∞,∞]

Deputy Speed ‖vd‖ 1 [−∞,∞]

Veloctiy Limit 0.2 + 2n‖rd‖ 1 [−∞,∞]

2D Oriented Docking

Lead Position in Deputy reference rdl = [xl, yl]
d [100, 100] [−∞,∞]

Deputy Velocity in Deputy Refereence vdd = [ẋd, ẏd]
d [0.5, 0.5] [−∞,∞]

Deputy Orientation [cos(θd), sin(θd)] [-1] [−∞,∞]

Deputy Angular Velocity θ̇d
π
90 [−∞,∞]

Deputy Speed ‖vd‖ 1 [−∞,∞]

Veloctiy Limit 0.2 + 2n‖rd‖ 1 [−∞,∞]
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and counteract the “In Rejoin” refund within the discounted
future reward estimate.

Docking—The docking rewards are very similar to the rejoin
rewards described above with sparse rewards for successs/-
failure terminal states and dense rewards for instantaneous
feedback. The success and distance reward are identical to
the rejoin rewards described above with slight changes to
normalization parameters. Docking also has an additional
velocity constraint reward with a constant penalty condition
applied whenever the constraint is violated in addition to a
scaling penalty that grows proportionally with the degree of
constraint violation, i.e. violating the safety constraint is bad,
violating it by a lot is very bad.

Terminal State

Tables 9 and 10 show the terminal states for the rejoin and
docking problem respectively. The top row in both tables
show the agent’s success condition and the subsequent rows
show the various failure condition. Of particular note, the
docking problem has a velocity constraint reward bound
failure condition that terminates the episode when its reward
reaches a predetermined lower bound of -5. This terminal
condition creates a hard limit on the soft velocity constraint,
preventing reward from growing negatively unbounded and
pruning episodes that are clearly unable to respect this soft
constraint at all. The reward is used as a proxy to measure
degree of constraint compliance failure, although this termi-
nal state does not necessarily need to be directly coupled to
reward and is done so here for simplicity. The soft velocity
constraint can be tightened and even made hard by decreasing
the reward lower to zero.

Implementation details

For the results shown in Section 6, both environments used
a discrete action space, normalized observation space, and
a batch size of 4000. To train the rejoin, truncated episodes
were used in each batch, while the docking training only used
complete episodes in each batch.

Logging

The RLlib framework supports callbacks, which implement
methods that are called periodically throughout training (once
every environment step, once every episode, and once during
postprocessing of trajectories). A CallbacksCaller class was
created to maintain a list of callback instances, allowing for
the use of multiple callbacks in a single training run. Some
callbacks create custom metrics desired for training analysis,
such as episode outcome (success or failure), failure code,
reward components, or statuses. The LoggingCallback is
responsible for the creation of logs. On construction, the
logging callback consumes information from the training
script regarding the number of rollout workers producing
logs, the logging interval (the number of episodes to omit
between logged episodes), and logging verbosity. During
training, the LoggingCallback’s on episode step() method
records simulation state data from the episode and to the
desired log file. One log file is created per logging worker.
The data is stored in the JSONlines format, to maintain
readability and portability to other platforms.

Plotting

To gain deeper insights into policy performance, there are two
primary methods for plotting training episodes: Tensorboard
and Jupyter Notebook. Tensorboard may be used to plot
common reinforcement learning training metrics such as total

environment steps, rewards, total loss, and more. Custom
metrics such as episode outcomes, failure code rates, and total
reward components may also be plotted on Tensorboard. All
plots have an adjustable x axis, allowing the user to choose
between environment steps, relative, or wall clock time as the
x variable.

For more specific insights into training, users may alter the
plotting notebook Jupyter Notebook included in the frame-
work at scripts/visualization/plot notebook.ipynb. This note-
book, holds a small tutorial for analyzing training results and
allows users access to matplotlib for advanced visualization.
This tool is useful for users with experience in python who
want to visualize specific custom details of their policy’s
interactions with its environment during training.

Scripts

Training script—The included training script, scripts/train.py,
can be used to construct an environment and train an agent
directly from a yaml config file. This training script uses
Ray RLlib and Ray Tune, however the environments can be
integrated into any OpenAI Gym compatible RL framework.
This training script offers many options for customizing
training. These options include specifying the environment
configuration, altering the length of training, determining
whether the policy is trained on batches of truncated or com-
plete episodes, changing the location of the output directory,
specifying the number of rollout workers and how many of
them produce logs of their episodes, altering the frequency
of checkpoints, configuring mid training evaluation episodes,
and more.

Evaluation script—The scripts/eval.py script, may be used
to run post hoc evaluation rollouts to benchmark the perfor-
mance of your trained policy. This script will load in the
policy and environment with the same configuration from
training and run ten rollout episodes. There are a number
of command line options that can be used to tailor the eval
script’s function. With these command line options, one can
select a specific saved checkpoint of the policy to evaluate,
pass a specific seed to the environment, determine the output
directory, alter the number of evaluation episodes to perform,
alter the configuration of the environment to test policy gen-
eralizability, and turn on rendering to gain visual intuition of
policy behavior and performance.

Tests

A suite of tests was developed leveraging pycharm to verify
the most important features of the codebase. All tests are
written in pycharm and organized into three major categories:
unit tests, integration tests, and system tests. Targeted unit
tests are used to ensure the function of vital modules. Inte-
gration tests are used to ensure interactions between modules
behave as expected. System tests are used to ensure the high
level function of the core features (namely the training of
agents on key environments). These tests give developers
quick methods for verifying unintended behavior is not intro-
duced during the creation of new features. Tests help to catch
code defects earlier in the development cycle, ultimately
reducing development time.
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Table 7. Rejoin Reward
Description Expression

Distance Change Rdt = 2
(
e−adt − e−adt−1

)
di = ‖rw,i − rl,i‖

a =
ln(2)

5000

In Rejoin
(refunded on exiting Rejoin Region)

Rrt =

{
+0.1 , if drt ≤ 150

−
∑t−1
i=0 R

r
i , if drt > 150

drt = ‖rw,t − rrejoin,t‖

In Rejoin First Time
(once per episode)

Rft =

+0.25 , if (dt ≤ 150) ∧ (∀i ∈ [0, t− 1] : di > 150)
0 , if dt > 150
0 , if ∃i ∈ [0, t− 1] : di ≤ 150

dt = ‖rw,t − rrejoin,t‖

Success +2− t
tmax

Failure
Crash -1
Distance -1
Timeout -1

Table 8. Docking Reward
Description Expression

Distance Change Rdt = 2
(
e−adt − e−adt−1

)
di = ‖rdeputy,i − richief,i‖

a =
ln(2)

100

Velocity Constraint Rvct =

{
−0.01− 0.01(‖vdeputy‖ − vlimit) , if ‖vdeputy‖ > vlimit
0 , if ‖vdeputy‖ ≤ vlimit

∆v −0.01(‖ u
m‖)

Success +2− t
tmax

Failure
Crash -1
Distance -1
Timeout -1
Vel Constr. Reward Limit 0

Table 9. Rejoin Terminal States
Description Condition
Success ∀i ∈ [t− 20, t], ‖rw,i − rrejoin,i‖ ≤ 150

Crash ‖rw,t − rl,t‖ ≤ 100

Distance
2D ‖rw,t − rl,t‖ > 40000

3D ‖rw,t − rl,t‖ > 100000

Timeout
2D t > 1000

3D t > 2000
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Table 10. Docking Terminal States
Description Condition
Success ‖rd − rc‖ ≤ 0.5, ‖vd‖ ≤ vlimit
Crash ‖rd − rc‖ ≤ 0.5, ‖vd‖ > vlimit

Distance ‖rd − rc‖ > 40000

Timeout
2D/3D t > 2000s
2D Oriented t > 3000s

Vel Constr. Reward Limit
∑t
i=0R

vc
i < −5
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