
Reinforcement Learning Heuristics
for Aerospace Control Systems

Preston K. Robinette
Vanderbilt University
2201 West End Ave.
Nashville, TN, 37235

preston.k.robinette@vanderbilt.edu

Benjamin K. Heiner
Air Force Research Laboratory

2241 Avionics Circle
Wright-Patterson Air Force Base, OH, 45433

benjamin.heiner@us.af.mil
Umberto Ravaioli

Toyon Research Corporation
6800 Cortona Dr.
Goleta, CA, 93117

uravaioli@toyon.com

Nathaniel Hamilton
Vanderbilt University
2201 West End Ave.
Nashville, TN, 37235

nathaniel.p.hamilton@vanderbilt.edu

Taylor T. Johnson
Vanderbilt University
2201 West End Ave.
Nashville, TN, 37235

taylor.johnson@vanderbilt.edu
Kerianne L. Hobbs

Air Force Research Laboratory
2241 Avionics Circle

Wright-Patterson Air Force Base, OH, 45433
kerianne.hobbs@us.af.mil

Abstract—Reinforcement learning (RL) is a form of machine
learning (ML) where an agent is directed to a goal by learning
from interactions within an environment. RL has been used
to solve previously intractable problems such as Backgammon,
Go, and Starcraft and offers a promising class of solutions to
complex problems in various domains, including ones involving
air and space. One of the major hindrances of using RL as
a method is the variability with which an agent trains, which
results from deep neural network architectures (e.g., number
of inputs, outputs, hidden layers and neurons in each layer,
activation functions, connectivity, etc.), algorithm hyperparam-
eters (e.g., batch size, training epochs, learning rate, etc.), goal
conditions, and reward functions. A slight modification to
any of these factors can have a major impact on the training
of the agent and the effectiveness of the learned policy. As
such, hyperparameter and architecture searches are common
practice in other domains involving neural networks. This work
focuses on a systematic approach to RL hyperparameter and
architecture optimization for aerospace control systems using
direct search, zeroth-order optimization, Bayesian optimization,
and asynchronous hyperband-based training methods that are
demonstrated in two different safety-critical aerospace environ-
ments and tasks, shedding light on general rules of thumb for
RL applied to aerospace control systems.
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1. INTRODUCTION
Reinforcement learning (RL) successes in high-dimensional
state spaces like Go [1] and real-time strategy games like
Starcraft [2] have inspired the application of RL on previously
intractable problems and in various domains, including traffic
control [3], robotics [4], chemistry [5], and advertising [6].
In the aerospace domain, machine learning (ML) techniques
may provide new and more efficient ways to manage air and
space traffic, which are projected to become increasingly
populated with non-traditional, commercial products like
package delivery and agricultural drones, urban air taxis, and
mega-constellations of satellites.

The algorithms used in RL and Deep RL (DRL) are based on
the concept of operant conditioning [7], in which reinforce-
ment via punishment or rewards is contingent upon behavior.
During training, an agent interacts with an environment by
taking actions as shown in Figure 1. The agent receives
feedback from the environment in the form of a reward and
an observation state and uses this feedback to intermittently
update its policy, which determines the best action to take
given an observation. The overall goal of the agent is to
maximize the total reward gained in the environment, and
it does so by creating and following a policy. [8]. DRL
uses the same concepts and strategies as RL but focuses on
more complex problems where the solution space, or policy,
is approximated by a deep neural network (DNN).

The DNN policy updates are dependent upon the RL algo-
rithm used during training. DRL algorithms come in many
different flavors, including model-free vs. model-based and
on-policy vs. off-policy. Many of the distinctions among
DRL algorithms are due to whether the agent has access to
a model of the environment and the question of what to learn
in the environment (e.g., policy, action-value function, etc.)
This work uses a model-free, policy optimization method
known as proximal policy optimization (PPO) [9]. The
benefits of PPO compared with other DRL algorithms are
that it ensures that policy updates are relatively small through
a clipping parameter, has an improved sample efficiency,
and has fewer hyperparameters. Although this work utilizes
PPO, the optimization methods used are applicable to all RL
algorithms. This work uses the PPO algorithm from RLlib
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Figure 1: RL agent and environment interaction.

[10], which is an open-source RL library built upon Ray
that facilitates and scales parallel computing across available
computational resources during training.

A significant challenge in RL is optimal parameter selection
of both the DNN architecture (e.g., number of inputs, outputs,
hidden layers and neurons in each layer, activation functions,
connectivity, etc.) and RL algorithm hyperparameters (e.g.,
batch size, training epochs, learning rate, etc.), which have
a significant impact on the success of a learned policy.
While there are many types of architectures available, this
work looks at feedforward, fully connected neural network
architectures. Just as with the RL algorithms, these methods
can be applied to different architecture types as well. Hyper-
parameter optimization (HPO) and architecture optimization
(AO) can require experts several months to hand tune and be
financially costly [11]. However, automated HPO and AO
approaches offer an alternative in an emerging field known as
automated machine learning (AutoML) [11]. While AutoML
involves the automation of the entire ML pipeline, includ-
ing data preparation, feature engineering, model generation,
and model estimation, this work focuses on the automated
approaches to model generation (HPO and AO).

This work builds upon a standard set of aerospace bench-
marks [12] to investigate HPO and AO methods for an aircraft
formation flight problem and a spacecraft docking problem.
The contributions of this work are:

• HPO search across nine learning hyperparameters using
five different optimization methods for PPO applied to two
aerospace benchmarks,
• AO search across number of hidden layers, number of
nodes in each layer, and activation functions for fully
connected, feedfoward DNN providing control signals to
aerospace benchmarks,
• validation of the results over ten random seeds to reduce
stochastic variability impacts, and
• a comparison of the results across the different environ-
ments.

The results of this analysis give insight into available HPO
and AO methods applied to aerospace RL problems.

The remainder of this paper is structured as follows: Section

2 introduces the two aerospace benchmarks; Section 3 de-
scribes the strategies used for optimization; Section 4 outlines
the HPO and AO searches used in this work; Section 5 dis-
cusses the results of the optimization methods and compares
the results of each environment; and finally, section 6 outlines
the conclusions and future areas of work related to this paper.

2. AEROSPACE BENCHMARKS
The HPO and AO methods discussed in the next section
are implemented on two different aerospace RL benchmarks
[12], described briefly in this section.

Spacecraft Docking

In the 2D Spacecraft Docking Environment, a deputy space-
craft agent is trained with RL to dock with a passively orbiting
chief. The location of the deputy with respect to the chief is
expressed in Hill’s reference frame [13] FH := (OH, îH, ĵH).
This frame’s origin OH is located at the mass center of the
chief, the unit vector îH points away from the Earth along a
line connecting the center of Earth to OH, and the unit vector
ĵH is aligned with the orbital velocity vector of the chief. The
position and velocity of the deputy relative to the chief are
denoted with vectors, r = xîH + yĵH and v = ẋîH + ẏĵH
respectively. The agent learns to apply thrust of the deputy
in the form of u = FxîH + Fy ĵH to successfully dock.
A first order approximation of the relative motion dynamics

Figure 2: Hill’s reference frame centered on a chief space-
craft and used to describe the relative motion of a deputy
spacecraft conducting proximity operations (not to scale).

between the deputy and chief spacecraft is given by Clohessy-
Wiltshire [14] equations,

ẍ = 2nẏ + 3n2x+
Fx

m

ÿ = −2nẋ+
Fy

m

(1)

where n is spacecraft mean motion and m is the mass of the
deputy. The deputy is considered successfully docked when
its distance to the chief is less than a desired distance ρd.

ϕdocking : (r ≤ ρd) (2)
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Aircraft Formation Flight

In the 2D Dubins Rejoin Environment, a Dubins air-
craft agent, the wingman, is trained with RL to fly in
formation with a lead aircraft. Figure 3 depicts the
goal of the wingman.The state of the scenario x =
[xL, yL, ψL, vL, xW , yW , ψW , vW ]T ∈ X ⊂ R8 is the
position (x, y), heading ψ, and velocity v of the lead L and
wingman W aircraft. The control for the system is defined
by u = [ψ̇W , v̇W ]T =[uW1

, uW2
]T ∈ U ⊂ R2. A two-

dimensional Dubins aircraft model is computed using Eq. (3).

ẋL = vL cosψL

ẏL = vL sinψL

ψ̇L = uL1

v̇L = uL2

ẋW = vW cosψW

ẏW = vW sinψW

ψ̇W = uW1

v̇W = uW2

(3)

Figure 3: Depiction of general rejoin task

To be successful, the agent must move the wingman aircraft
to a position defined by a relative distance ρr and an aspect
angle θAA measured from the back of the lead aircraft (-xbL)
to the vector pointing to the wingman’s location. The aspect
angle and distance correspond to a formation flight position
that a human flight lead would command a wingman to enter.
This relative position command can be converted to Cartesian
coordinates by Eq. 4.

xr = xL + ρr cos(ψL + π + θAA)

yr = yL + ρr sin(ψL + π + θAA)
(4)

An agent is considered successful if the error between the
wingman’s position and the commanded rejoin point is less
than a specified value ρe and if the time in the rejoin position
trejoin is greater than a threshold value tsuccess (in this case 20
seconds).

ϕformation :(
√
(xW − xr)2 + (yW − yr)2 ≤ ρe)

∧ (trejoin ≥ tsuccess)
(5)

3. OPTIMIZATION STRATEGIES
There are a growing number of optimization methods and
libraries being made available for ML and RL problems as

the benefits of model tuning continue to grow. Current HPO
and AO automated methods include direct search [15–18],
reinforcement learning [19, 20], genetic algorithms (GA)
[21, 22], zeroth-order (ZO) [23], and bayesian optimization
(BO) [24–26]. In order to focus time and resources on ap-
proaches that are most suited to individual project needs and
restrictions, it is important to know the motivations behind
available methods.

Search Algorithms

Search algorithms are used to sample configurations from
a user defined search space. The search space could in-
clude any number of hyperparameters, rewards, and/or model
architectures. Zeroth-order (ZO) optimization methods are
optimization techniques that do not use loss function gradi-
ents [27]. Direct search methods such as grid search (GS)
and random search (RS) are special cases of zeroth-order
methods. Grid searches are guaranteed to find an optimum in
finite discrete search spaces that can be completely explored,
but the global optimum in continuous search spaces could
be missed entirely as shown in Figure 4a. For continuous

(a) Grid Search (b) Random Search

Figure 4: Direct Search Methods

search spaces, it is more common to use RS as shown in
Figure 4b. In RS, a specified number of random combinations
in the search space are evaluated as inputs to the indicated
function. RS can be effective in large search spaces but
wastes time by training bad trials to completion, a factor that
could greatly impact RL problems. Another ZO method,
univariate search, starts from an initial guess in the search
space and samples values along one parameter, stopping at
a local minima. At this local minima, the next parameter is
sampled until it reaches another local minima. This process
is repeated until an extremum is reached as shown in Figure
5. Through sampling, univariate search is able to navigate the
function landscape to find optimal parameter configurations.
ZO methods are not always the most efficient ways to search

Figure 5: Univariate Search.

the state space if additional information is available; however,
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Table 1: Description and ranges of hyperparamters used in the HPO search

Range
Hyperparameter RLlib Variable Symbol Min Max Description

Lambda lambda λ 0.9 1.0 Lambda reduces the variance of the advantage
estimate in training.

VF Loss Coefficient vf loss coeff c1 0.0001 1.0
The value function loss coefficient determines the
importance of value estimation in the complete
loss function used to train the agent.

Entropy Coefficient entropy coeff a 0.00 0.01
The entropy coefficient sets the importance of
exploration in the complete loss function used to
train the agent.

Clip Parameter clip param ε {0.1, 0.2, 0.3}

The clip parameter is used as a constraint on
policy changes. This prevents major, often times
drastic, changes in policy from occurring. A
clip parameter of 0.3 allows for a greater policy
update.

Gamma gamma γ 0.8 0.9997
The discount factor is a constant that determines
the impact of future rewards. The higher the
gamma value, the more the agent cares for future
rewards.

Learning Rate lr η 5e-06 0.003
The learning rate, or step size, determines how
much a model is changed in the direction of the
gradient of the loss function.

Epochs num sgd iter K 10 40 The number of times all of the minibatches are
used to update the policy.

Minibatch Size sgd minibatch size M 128 8192 The size of the chunks collected from the train
batch size.

Train Batch Size train batch size NT 64 160250 The number of samples, or timesteps, collected
before a policy update.

Table 2: Description and ranges of the features used in the AO search

Feature Range Description
Input layer fixed to environment The number of neurons in the input layer is equal to the size of the

observation state that is returned from the environment after an action.

Output layer fixed to environment The output layer size corresponds to the number of available actions of
that environment, 2 in the case of both aerospace benchmarks.

Hidden Layers {1,2,3,4,5,6}
Hidden layers refer to the number of layers between the input and
output layer. For instance, if a DNN has 2 hidden layers, there are
two middle layers between the input and output.

Nodes per Layer {32, 64, 128, 256, 512} Each hidden layer is made up of a certain number of nodes, or neurons,
usually a power of 2.

Activation Function {linear, ReLU, tanh, swish}

The activation function corresponds to the “firing” of a node. The value
of a node for a fully connected, feed forward neural network is the sum
of the all the nodes in the previous layer multiplied by their respective
weights and added with a bias. The value of the node is then the input
to an activation function which calculates if that node is “activated.”
The activation functions used in this work are show in Figure 6.

they are highly parallelizable.

In Bayesian optimization (BO), an optimizer periodically
samples a trial configuration. This trial is trained, and the info
from the training is passed back to the optimizer, allowing it
to use this information to sample a new configuration. While
this method intelligently samples configurations, it is only
semi-parallelizable as previous trials are needed to inform the
optimizer. Three different BO libraries are used in this work
and described below.

1. BayesOpt: BayesOpt is an open-source, optimization
library for nonlinear problems that uses a Gaussian Process
(GP) surrogate model to maximize an indicated function [28].
BayesOpt iteratively fits a GP to a subset of configuration
samples, maximizing an aquisition function to select the best
hyperparameter values for the next subset of configurations.
This process is repeated for the set number of samples indi-

cated by the user.
2. HyperOpt: HyperOpt is an optimization open-source
library based on BO that is adapted to work with Tree of
Parzen Estimators (TPE), Adaptive Tree of Parzen Estimators
(ATPE) and Gaussian Process (GP) surrogate models [29,30].
3. BOHB: BOHB is an open-source optimization library
that uses BO and a scheduler known as HyperBand [31].
BOHB works much in the same way as BayesOpt, but it will
automatically stop low performing configurations with rules
related to HyperBand, releasing resources for new configura-
tions.

This work applies direct search, ZO, and BO methods through
the Ray Tune library1 [32].

1Documentation on the Ray Tune library can be found at
https://docs.ray.io/en/latest/tune/index.html
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Schedulers

While search algorithms are used to sample configurations,
schedulers can be used to stop, clone, or pause trials. Sched-
ulers greatly improve the efficiency of hyperparameter and
architecture searches by allocating more time and resources
to promising configurations. One such scheduler is asyn-
chronous hyperband (ASHA), which is an early stopping
scheduler. ASHA uses a designated metric, such as episode
reward mean, to stop trials early. If a trial is not above a
threshold after a certain number of training steps, the trial is
terminated or paused, and the resources are allocated to a dif-
ferent configuration. In most cases, ASHA can be combined
with a search algorithm, but some Ray Tune optimization
methods have schedulers built in, such as BOHB which uses
HyperBand (HB). HB is a precursor and less aggressive
version of ASHA that applies the same methodology. These
schedulers are commonly used with GS, RS, and BO search
algorithms.

4. HYPERPARAMETER AND NEURAL
NETWORK ARCHITECTURE
OPTIMIZATION SEARCHES

The 2D aircraft and spacecraft aerospace RL benchmarks are
iteratively trained using the PPO algorithm from RLlib in the
search for optimal hyperparameters and DNN architectures.
An optimization method consists of a search algorithm and
a scheduler. The optimization methods discussed above are
applied in two phases. In the first phase, a hyperparameter
search is conducted to find optimal learning hyperparameter
values. The second phase builds upon these hyperparameter
values to search for optimal feedforward, fully connected
DNN architectures. Each of the following search methods
were employed:

• Random Search + ASHA,
• ZOOpt (zeroth-order method) + ASHA ,
• BayesOptSearch(Bayesian optimization) + ASHA ,
• HyperOptSearch (Bayesian optimization) + ASHA, and
• BOHB (Bayesian optimization).

Each of these search algorithms and schedulers are imple-
mented from the Ray Tune library [32].

Experimental Setup

To ensure that improvements in performance were the re-
sult of optimized hyperparameters and DNN architectures
rather than some other effect, three important considerations
were made. First, unsafe conditions were used as terminal
conditions - all cases terminated if the aircraft or spacecraft
crashed, went out of bounds, or exceeded a time limit before
successfully completing the task. Second, experiments were
repeated across ten random seeds. Due to the stochastic
nature of RL, showing the results of one trial makes it
possible for experimenters to skew results by picking the
best performing trial. Running experiments across at least
five random seeds and averaging results is important to prove
a performance trend [33]. Third, the initial conditions for
each case were equally random so that no configuration
received an advantage for solving the task given “easier”
initial conditions than another.

Hyperparameter Search

A description of each of the hyperparameters optimized as
well as the range of values considered in the search is listed
in Table 1. Each search method is run for 500 samples on

110 CPUS with 10 workers per configuration. The number
of workers corresponds to the degree of parallelism during
training. By using 10 workers on 110 CPUS, 10 configura-
tions can train at a time (each training configurations also uses
1 CPU for logging). The 10 workers for each training config-
uration are then used to collect samples in the environment
during training in parallel [34]. Each configuration is trained
on the same random seed value; however, each worker has
a different seed starting sequentially from the random seed
value. For instance, worker 0 would use the random seed
value, worker 1 would then use the random seed value + 1,
etc. At the end of the search, the top performing configuration
for each search method indicated by the evaluation metrics
described later is then trained across 10 random seeds, and the
results from these 10 runs are then averaged for comparison.

Architecture Search

An architecture for a fully connected DNN consists of an
input and output layer, hidden layers, neurons per layer, and
an activation function. AO is the process of finding an optimal
DNN architecture to successfully complete a task in the envi-
ronment. Each of the top performing configurations found in

(a) Linear Function (b) ReLU Function

(c) Swish Function (d) Tanh Function

Figure 6: Activation Functions

the hyperparameter search are used as starting configurations
for the AO search. The search space for the AO is shown
in Table 2. RS with ASHA is used for each AO across 500
samples. Once again, the top performing configuration is
trained across 10 random seeds, and the results from these
10 runs are then averaged.

Evaluation Metrics

The evaluation metrics used to select for top configurations
from each optimization search are listed below. These eval-
uation metrics are chosen to prioritize time, success, and
efficiency. The metric indicator (i.e., low, high) corresponds
to the expected trend of top performing configurations.

1. Episode Length (low) - The average episode length across
all episodes in the final iteration of training. Episode length
corresponds to the number of timesteps before an episode is
terminated. An episode can be terminated because of success
(e.g., the goal is completed) or failure (e.g., timeout, crash,
out-of-bounds). While episode length is a good indicator
of the strength of the policy found, where less time needed
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corresponds to a better policy, it can also be short if the agent
learns negative behavior. For instance, an agent could learn to
immediately go out-of-bounds or crash in order to terminate
the episode.
2. Success Rate (high) - The percentage of episodes in the
final iteration of training that successfully completed the
goal. Although an essential check for policy correctness, this
evaluation metric does not distinguish among top performing
configurations, where 100% is the default.
3. Mean Reward (high) - The mean reward across all
episodes in the final iteration of training. The mean reward is
a success metric that identifies configurations that are maxi-
mizing dense rewards such as the distance change reward and
the time reward. Top performing configurations are usually
100% successful in the final iteration, receiving the same
positive episode termination reward. Trials with high mean
rewards result in policies that maximize dense rewards across
all episodes, indicating a more efficient policy. However,
some trials may have high rewards by exploiting behavior that
was not intended by the designers and could indicate a need
to further refine the reward objective function.
4. Interaction Efficiency Rate (low) - The percentage of all
total interactions, or actions, needed to reach an 80% success
rate during training. If a configuration has a low interaction
efficiency rate, it is finding and utilizing a successful policy
faster compared to other trials. In some case this early per-
formance gain could be due to random chance, for example
a lucky random seed. However, when averaged over many
random seeds, efficiency can be more accurately evaluated.

By using all four metrics across 10 random seeds, the
strengths and weaknesses of each metric are balanced in the
AO and HPO searches.

5. RESULTS AND DISCUSSION
This section describes the best hyperparameters found us-
ing each of the 5 combinations of HPO and AO search
methods (RS + ASHA, ZOOpt + ASHA, BayesOptSearch
+ ASHA, HyperOptSearch + ASHA, and BOHB), as well
as the performance of DNNs trained using each of the four
evaluation metrics (episode length, success rate, mean re-
ward, and interaction efficiency rate) for the Docking and
Rejoin environments. A summary of the best performing
hyperparameter combinations for the Docking and Rejoin
environments found using 500 trials by 5 different methods
(2500 total configurations) are shown in Table 5. While some
of the hyperparameters in the best performing configurations
are very close to the default values in RLlib (e.g. epochs,
lambda, gamma), other parameters showed significant devi-
ations. In particular, the best Docking configuration had a
training batch size nearly an order of magnitude larger than
the default, while the best Rejoin train batch size was double
the default value. This means that many more episodes were
used to inform each stochastic gradient descent update of the
DNN.

Docking Benchmark

The results of the AO and HPO search for the 2D Spacecraft
Docking Benchmark are shown by their performance on each
of the four metrics in Figure 7. The hyperparameters and
DNN architecture for the default RLlib PPO as well as the
top set found using each method are shown in Table 3.
The best performing configuration during the HPO indicated
by the evaluation metrics (lowest episode length, highest

reward, and most efficient interactions) was found using the
RS algorithm with the ASHA scheduler (RS+ASHA), which
had a 2x shorter episode length, 2x greater mean reward,
and an 8x greater interaction efficiency compared to the
default policy. The optimized architectures represented by
the blue striped bars show improved performance for each
of the hyperparameter configurations chosen during the HPO
search, excluding the default configuration and RS+ASHA.
This demonstrates that both HPO and AO searches generally
improve performance.

The configuration found using the ZOOpt search algorithm
with the ASHA scheduler (ZOOpt+ASHA) also performs
significantly better compared to the default hyperparame-
ter values and DNN architecture for RLlib’s PPO algo-
rithm. One key distinction between the RS+ASHA and
the ZOOpt+ASHA trials is the train batch size and mini-
batch size. The top hyperparameters and DNN architec-
ture RS+ASHA utilizes a train batch size of 39064 and a
minibatch size of 256, whereas ZOOpt+ASHA utilizes a
train batch size of 10564 and a minibatch size of 2048.
RS+ASHA, therefore, is split into 152 chunks for an update,
and ZOOpt+ASHA is split into 5 chunks per update. There
are more updates occurring in the RS+ASHA configuration
than that of the ZOOpt+ASHA resulting in a much longer
training time. Although, the performance of the RS+ASHA is
stronger, the ZOOpt+ASHA configuration is preferred due its
shorter training time. While ZOOpt+ASHA and RS+ASHA
demonstrate the best performance compared to the default
configuration, all five optimization methods improved upon
the default configuration performance.

To give an idea of how the hyperparameters and DNN archi-
tectures translated to trajectories of the spacecraft under the
RL agent’s control, random rollouts (one simulated case of
docking) for each of the selected policies are shown in Figure
8. There are some instances where the rollout of one of the
optimized cases is close to the default case’s performance,
such as in policy rollout 2, while others like policy rollout 6
indicate how the default trajectory in magenta takes a much
longer path than any of five optimized cases. All of the
optimized configurations demonstrate better policies (more
efficient) compared to the default configuration rollouts.

Rejoin Benchmark

The results of the AO and HPO search for the 2D Dubins
Rejoin environment are shown in Figure 9. The hyperparam-
eters and DNN architecture for the default RLlib PPO as well
as the top set found using each method are shown in Table 4
The best performing configuration for the 2D Dubins Rejoin
Benchmark was found using the ZOOpt+ASHA method.
Although not as distinct of an improvement as that found with
the 2D Spacecraft Docking Environment, the episode length
is shorter, mean reward greater, and interaction efficiency
smaller as well.

A random rollout for the optimized configurations is shown
in Figure 10. Here the policy from the default configuration
crashes. While the configurations from the HPO search are all
successful, the ZOOpt+ASHA policy is more efficient. The
next best policy is found with the RS+ASHA method. The
results of the architecture search are indicated by the blue
striped bars in Figure 9. The AO improves performance for
each of the hyperparameter configurations chosen during the
HPO search, except for HyperOpt with ASHA.

An important distinction between the results for each envi-
ronment is that not all optimization methods performed better
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(a) Episode Length (b) Success Rate

(c) Mean Reward (d) Interaction Efficiency

Figure 7: 2D Spacecraft Docking Environment Results

(a) Policy Rollout 1 (b) Policy Rollout 2 (c) Policy Rollout 3

(d) Policy Rollout 4 (e) Policy Rollout 5 (f) Policy Rollout 6

Figure 8: Docking Policy Rollouts with HPO
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(a) Episode Length (b) Success Rate

(c) Mean Reward (d) Interaction Efficiency

Figure 9: 2D Dubins Rejoin Environment Results

(a) Policy Rollout 1 (b) Policy Rollout 2 (c) Policy Rollout 3

(d) Policy Rollout 4 (e) Policy Rollout 5 (f) Policy Rollout 6

Figure 10: Rejoin Policy Rollouts with HPO

8



Table 3: Spacecraft Docking Environment PPO Hyperparameter Values with Various Optimization Methods

Hyperparameter RLlib Variable Symbol Docking
Default

Docking
ZOOpt
(ASHA)

Docking
BayesOpt
(ASHA)

Docking
HyperOpt
(ASHA)

Docking RS
(ASHA)

Docking
BOHB

Lambda lambda λ 1.0 0.904496 0.934828 0.932390 0.94334 0.976152

VF Loss Coefficient vf loss coeff c1 1.0 0.083059 0.403379 0.237571 0.678487 0.564072

Entropy Coefficient entropy coeff a 0.0 0.004315 0.0 0.005741 0.002971 0.002325

Clip Parameter clip param ε 0.3 0.2 0.3 0.2 0.2 0.2

Gamma gamma γ 0.99 0.988633 0.977449 0.974967 0.991423 0.956411

Learning Rate lr η 0.00005 0.001344 0.00005 0.000659 0.000082 0.000981

Epochs num sgd iter K 30 34 30 25 28 20

Minibatch Size sgd minibatch size M 128 2048 226 512 256 1024

Train Batch Size train batch size NT 4000 10564 16358 10564 39064 19314

Hidden Layers fcnet hiddens [512,256,256,64] [512,256] [512,256,32] [512,256] [512,256,32,32,32] [512,128]

Activation Function fcnet activation tanh tanh tanh tanh tanh tanh

Table 4: Dubins Rejoin Environment PPO Hyperparameter Values with Various Optimization Methods

Hyperparameter RLlib Variable Symbol Rejoin
Default

Rejoin
ZOOpt
(ASHA)

Rejoin
BayesOpt
(ASHA)

Rejoin
HyperOpt
(ASHA)

Rejoin RS
(ASHA) Rejoin BOHB

Lambda lambda λ 1.0 0.923305 0.911153 0.940532 0.923414 0.963833

VF Loss Coefficient vf loss coeff c1 1.0 0.347996 0.953926 0.008325 0.072642 0.373403

Entropy Coefficient entropy coeff a 0.0 0.002276 0.0 0.007593 0.000163 0.004901

Clip Parameter clip param ε 0.3 0.3 0.3 0.2 0.3 0.3

Gamma gamma γ 0.99 0.990064 0.878836 0.997807 0.987031 0.908378

Learning Rate lr η 0.00005 0.000255 0.00005 0.000845 0.000435 0.000715

Epochs num sgd iter K 30 27 30 28 26 11

Minibatch Size sgd minibatch size M 128 1024 1236 4096 256 512

Train Batch Size train batch size NT 4000 8814 7851 5064 6064 2814

Hidden Layers fcnet hiddens [256,128,128] [512,512,32] [256,256,32,32,32,32] [128,128,32,32] [128,128,32,32] [128]

Activation Function fcnet activation tanh tanh relu relu swish tanh

than the default configuration in the Rejoin environment.
Each of the methods utilizing a Bayesian optimization search
algorithm chose a hyperparameter configuration that per-
formed worse than the default. This could be due to sample
size, as the optimizer did not have enough samples to train
on in order to find a definitive pattern in the hyperparameter
search.

6. CONCLUSIONS AND FUTURE WORK
The results of this work demonstrate the benefit of using
HPO and AO methods for aerospace RL benchmarks, in-

creasing performance and consistency in training and eval-
uation results. Although the results of this work align with
Andrychowicz et als. recommendation to start with a tanh
activation function [35], there is not enough information to
lay claim to a consistent set of hyperparameters and archi-
tectures for aerospace reinforcement learning problems. This
work also highlights the effectiveness of specific optimization
methods on aerospace systems, particularly RS with ASHA
and ZOOpt with ASHA. There are many interesting avenues
of exploration related to this work, including methodology,
environment benchmarks, and safety.
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Table 5: Comparison of the Best Hyperparameters found
for the Docking and Rejoin Environments

Hyperparameter Default Docking Rejoin
Lambda 1.0 0.94334 0.923305

VF Loss Coefficient 1.0 0.678487 0.347996
Entropy Coefficient 0.0 0.002971 0.002276

Clip Parameter 0.3 0.2 0.3
Gamma 0.99 0.991423 0.990064

Learning Rate 0.00005 0.000082 0.000255
Epochs 30 28 27

Minibatch Size 128 256 1024
Train Batch Size 4000 39064 8814

Methodology

Future work could explore additional search and optimiza-
tion methods. While this work applied five different search
algorithms, there are other promising search algorithms and
schedulers available that may lead to better results. Valuable
future work includes utilizing and comparing all available
method such as AxSearch, NevergradSearch, OptunaSearch,
etc. In addition to including more optimization methods,
there is also benefit in exploring the order of the searches.
In neural architecture searches, a branch of AutoML, the
architecture is optimized first and then the hyperparameter
values. It would be interesting to see if performing the AO
search before the HPO search improves overall performance.
There is also room to explore the effect of performing both
searches at the same time instead of sequentially. This topic
is not as widely explored.

Environment Benchmarks

Future work could explore benchmarks with larger observa-
tion and action spaces. The environments used in this work
have small observation and action spaces. To improve the
value of the conclusions in regard to optimization methods,
it would be beneficial to see how the searches respond in
more complex environments. This includes making the
environments harder to solve (e.g., larger range in initial
position, faster speeds, smaller docking region) and using en-
vironments with larger observation and action spaces such as
the 3D Spacecraft Docking Environment and the 3D Dubins
Rejoin Environment.

Safety

Along the same line as environment complexity, future ar-
eas of work include using these optimization techniques in
the presence of a run-time assurance (RTA) module during
training. While the added RTA module does not have tunable
hyperparameters, it could significantly affect the training pro-
cess, possibly altering the benefit of using the corresponding
optimization methods.

There are many important avenues of potential research re-
lated to this work. HPO and AO are an imperative part of the
future of machine learning and RL success. Relying on fewer
experts to significantly improve performance will facilitate a
much larger impact on machine learning and RL technique
application in the aerospace domain.

APPENDIX
The configuration of the Rejoin and Docking environments
are described in Tables 6 and 7.

Table 6: Rejoin Default Environment Configurations

Lead
Velocity (ft/s) [10,100]

Velocity @t0 (ft/s) [40,60]
x,y Position @t0 (ft) [-4000,4000]
Heading @t0 (rad) [0,2π]

Wingman
Velocity [10,100]

State Reference lead aircraft
Rel. Velocity @t0 (ft/s) [10,100]
Rel. Distance @t0 (ft) [1000,10000]
Rel. Angle @t0 (rad) [0,2π]
“Rudder” ψ̇ (rad/s) [-0.1,0.1]
v̇ (throttle, ft/s2) [-10,10]

Rejoin Region
State Reference lead aircraft

Aspect Angle θAA (deg) 60
Relative Distance ρr (ft) 500

Region Radius ρe(ft) 150

Table 7: Docking Default Environment Configurations

Chief
x0,ẋ0, y0, ẏ0, z0, ż0 0

Deputy
Velocity

[
0, 0.2 + 2n

√
x2 + y2

]
State Reference Chief

Rel. Distance @t0 (ft) [100,150]
Rel. Angle @t0 (rad) [0,2π]
“Thrust” Fx/m (m/s2 [-1,1]
“Thrust” Fy/m (m/s2 [-1,1]

Docking Region
State Reference Chief
x offset (m) 0
y offset (m) 0
radius (m) 0.5
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